
HAMAD BIN KHALIFA UNIVERSITY

COLLEGE OF SCIENCE AND ENGINEERING

HARPY
Detection of Anomalous Deployment of IoT Devices

BY

Mohamed Amara

Omar Elshal

Selman Tabet

Senior Design Project Final Report

Submitted to the Faculty of

College of Science and Engineering

In Partial Fulfillment

of the Requirements

for the Degree of

Bachelor of Science in Computer Engineering

December 2020

© Mohamed Amara, Omar Elshal, Selman Tabet. All Rights Reserved

COMMITTEE

The members of the Committee approve the Project described in this document as

defended on date [December 28, 2020]

[Dr. Ala Al Fuqaha]

Project Supervisor

[Dr. Jens Schneider]

Chair of the Committee

[Dr. Samir Brahim Belhaouari]

Committee Member

[Dr. Mohamed M. Abdallah]

Committee Member

i

Abstract

IoT devices have been growing in popularity in recent years, and with it comes issues

regarding security and safety. Such devices can come take on many different forms

and functions, some of which can behave in a malicious manner. To address this an

application was made that gives network administrators a clear view of IoT devices in

the network, powered by a Machine Learning algorithm to classify different devices.

The classification algorithm was trained on data collected through previous research

as well as the team’s own internally collected data.

ii

Contents

Abstract ii

List of Figures vii

Acknowledgements ix

1 Specifications 10

2 Project Design & Structure 12

2.1 Work Package 1: Software . 13

2.2 Work Package 2: Software . 13

2.3 Work Package 3: Software . 14

2.4 Work Package 4: Engagement . 14

2.5 Work Package 5: Engagement . 14

2.6 Work Package 6: Engagement . 14

2.7 Work Package 7: Hardware . 15

2.8 Work Package 8: Hardware . 15

2.9 Work Package 9: Hardware . 15

2.10 Work Package 10: Writing Final Report 15

3 Stakeholders 16

3.1 Input from Stakeholders . 17

3.1.1 Siemens . 17

3.1.2 Ministry of Interior in Qatar 18

4 Test Devices and Procurement 18

iii

5 Literature Review 20

5.1 IoT Devices Recognition Through Network Traffic Analysis 20

5.2 Automatic Device Classification from Network Traffic Streams of In-

ternet of Things . 21

5.3 Investigating the Dark Cyberspace: Profiling, Threat-Based Analysis

and Correlation . 22

5.4 Classifying IoT Devices in Smart Environments Using Network Traffic

Characteristics . 23

5.5 Detecting Volumetric Attacks on IoT Devices via SDN-Based Moni-

toring of MUD Activity . 24

6 Methodology and Experimental Setup 26

6.1 Joy . 26

6.2 The Sleuth Kit . 28

7 Input System 30

7.1 Joy Shell Script . 30

7.2 Feature Extraction Scripts . 33

7.3 New Data Acquisition . 36

7.4 Concerns and potential improvements 44

7.4.1 New Feature Overhead and Limitation 44

7.4.2 Router/Switch Requirements 46

7.4.3 Data-set-related Limitations 47

8 Machine Learning Software Program 49

8.1 Introduction . 49

iv

8.2 Machine Learning Program Functionality 49

8.3 Machine Learning Algorithm . 51

8.4 Data Preparation . 52

8.5 Machine Learning Model Creation and Training 59

8.6 Testing and Results Observations . 61

8.7 Listening and Updating the Real-time Database 64

9 Output System 67

9.1 Overview . 67

9.2 React Native . 68

9.3 AWS . 70

9.4 Firebase . 71

9.5 Firebase vs AWS . 72

9.6 The Single Board Computer . 73

9.7 The Mobile Application . 74

9.7.1 Limitations and Future Work 82

10 Conclusion 83

References 84

Appendix 86

A Data Acquisition and Preprocessing 86

A.1 Shell Script . 86

A.2 Harpy Shell Launcher . 87

A.3 Feature Extraction Script . 90

v

B Machine Learning Code 100

C React Native Code 110

C.1 Navigation . 110

C.2 Firebase Configuration . 111

C.3 Home Screen . 111

C.4 List Screen . 118

C.5 Device info page . 123

vi

List of Figures

1 Harpy Architecture . 12

2 Joy Code Example . 26

3 Joy Output After Execution . 27

4 Sleuth Code Example . 28

5 Sleuth Output After Execution . 29

6 The original Shell Script. 31

7 The Launcher script. 34

8 The launcher info. 36

9 The first capture run . 37

10 Error messages printed by Joy . 38

11 Arbitrary packet inspection of a Linux cooked capture. 38

12 List of interfaces displayed on OpenWrt LuCI. 39

13 br-lan is available here, allowing us to capture all needed data. . . . 40

14 The second capture run. 40

15 Arbitrary packet inspection showing the correctly captured packets. . 40

16 Successful Joy output. 42

17 tmux for parallelizing workloads and keeping the capture process alive

post logoff. 43

18 Sample of a device’s extracted RDAP entry. 45

19 Random Forest algorithm functionality simplified 52

20 Snapshot of training data-set . 53

21 Data-set file analysis . 53

22 Open the CSV files . 56

vii

23 Drop any row of data with missing values 56

24 Drop the unnecessary features . 57

25 Encode the categorical values . 57

26 Create the Y data-set . 58

27 Create the X data-set . 58

28 Split the data-sets for training and testing 60

29 Import RandomForestClassifier from sklearn 60

30 Train the model . 60

31 Test the model . 61

32 Find the results . 61

33 Performance analysis for the 5 minutes time scale model 62

34 Performance analysis for the 15 minutes time scale model 62

35 Performance analysis for the 30 minutes time scale model 63

36 Importance of each feature . 64

37 Firebase Configuration . 65

38 Listen and update - 1 . 66

39 Listen and update - 2 . 67

40 Listen and update - 3 . 67

41 Mobile app first page . 75

42 Second page in the beginning . 77

43 Second page after marking a safe device 79

44 Device info when it is unsafe . 80

45 Device info when it is safe . 81

viii

ACKNOWLEDGMENTS

We would like to thank every individual that contributed to the success of this

project. Especially, the Ministry of Interior in Qatar and Siemens Qatar for their

valuable feedback. We would also like to thank Dr. Ala Al Fuqaha for guiding us

throughout the journey.

ix

1 Specifications

This project is going to focus on detecting malicious and rogue IoT devices in certain

premises. With the advancements of the IoT devices, many of the new devices con-

stitute huge threats against civilians. With characteristics like the micro size and the

wide range of operations, the sheer number of IoT devices deployed worldwide and the

vulnerabilities that were historically exploited time and time again, it became almost

a necessity to have a device to protect the people from the dangers of having such

devices planted in their private premises. A simple example of such a device is the

IoT Micro Camera, which can be simply planted by an invader in someone’s private

area and record. Potential threats of an action like this is black mailing and collecting

private information. Therefore, our main goal from this project is to provide security

and assure privacy in households and private spaces like offices and stores.

Harpy’s architecture (Figure 1) consists of a raspberry pi that is deployed in the

premises of interest. It will collect the network traffic using traffic monitoring software

such as Wireshark, then process the capture files with the Joy tool -which will be

discussed later on the paper- in order to extract the important information. After

that, data-sets will be sent to the server, and run the Long Short-term Memory

+ Convolutional Neural Network (LSTM-CNN) cascade model, to classify the IoT

devices in the premises. After classification, the list of the IoT devices will be sent

to the user on their mobile phone. That will be done through updating the database

on Firebase and then updating the list on the mobile application.

10

The user will be able to see the devices installed and functioning around them.

For future work; in the event of the discovery of a malicious device, we want to give

the user the ability to take action, to jam the malicious device, for example.

To test our implementation we are going to set up a network of these IoT devices:

(Samsung camera, TP Link Plug, Amazon Echo, and ChromeCast). Then we will

use HBKU virtual machines to run the machine learning algorithms. The rest of the

implementation will be the same as above.

Such a product can serve the community in many different sectors. Not only the

private sector, but also offices and workspaces can use such a product to protect their

privacy. Security nowadays play a big role in the success of any enterprise, and as

potential threats become more dangerous, companies are spending more and more on

privacy shielding.

We will try to design the product in a way that makes it as efficient and as

user-friendly as possible. We will achieve that by providing the user with all the

needed information about the intruding device, through the fastest and most acces-

sible streams, like a mobile phone app for example.

Providing the user with accurate information is a very crucial part of this project,

therefore, the machine learning aspect of it is going to be the foundation and building

block. Higher accuracy can be achieved through intensive training and debugging,

however, we aim to make the module self-taught allowing it to improve by time,

relative to the amount of data it consumes.

11

Figure 1: Harpy Architecture

2 Project Design & Structure

We decided to break our project into four phases. Each phase will consist of 3 work

packages (WP), each assigned to one of the team members is going to be primarily

responsible for it, along with another team member as the second worker for support.

Except for the last phase where all team members will work on it together. The first

phase will be focused on the software part of the project, mainly the development of

the machine learning data classification algorithm, training the module and testing

it. In the second phase we will focus on targeting our stakeholders and engaging with

them. The purpose of this phase is to understand the needs of our stakeholders and

the industry. We will try to conduct as many meetings with them as possible, and

structure our hardware prototype based on the feedback we get from them. The third

12

phase will be dedicated to the hardware component of our project, which is basically

the IoT network we are going to create to test our project. Finally, the last phase is

going to be dedicated to writing the final report.

10th April 10th, May 10th, June 10th, July 10th, August 10th, September 10th, October 10th, November 6th, December
WP1
WP2
WP3
WP4
WP5
WP6
WP7
WP8
WP9
WP10

Unstarted
In progress
Completed

2.1 Work Package 1: Software

Goal: Collect data and organize it, develop initial tests.

Personnel: Selman and Omar will work jointly on this package.

Required Expertise: Selman will bring data science expertise and Omar will con-

tribute experience in structuring the data.

Milestone: Prepare sufficient data for processing.

2.2 Work Package 2: Software

Goal: Programming and coding the machine learning module.

Personnel: Mohamed and Selman jointly

Required Expertise: Mohamed will write the code and develop the algorithm. Salman

will contribute to the coding process and help with debugging.

Milestone: Develop an MVP of a program that identifies IoT devices.

13

2.3 Work Package 3: Software

Goal: Test the software and visualize results

Personnel: Omar and Mohamed jointly

Required Expertise: Expertise in graphing and visualizing data contributed by Omar.

Analyzing the results contributed by Mohamed.

Milestone: Complete training and testing

2.4 Work Package 4: Engagement

Goal: Research and scout for potential stakeholders.

Personnel: Selman.

Required Expertise: Solid understanding of the project and what it serves.

Milestone: Find at least three potential stakeholders in Qatar

2.5 Work Package 5: Engagement

Goal: Contact stakeholders and setup meetings with them.

Personnel: Omar

Required Expertise: Good communication skills.

Milestone: Take care of all engagement logistics

2.6 Work Package 6: Engagement

Goal: Prepare presentations and present to stakeholders in meetings.

Personnel: Mohamed

Required Expertise: Good presentation skills.

Milestone: Present to stakeholders.

14

2.7 Work Package 7: Hardware

Goal: Design and structure the IoT devices Network.

Personnel: Mohamed and Omar.

Required Expertise: Good understanding of the testing process.

Milestone: Set up the IoT network.

2.8 Work Package 8: Hardware

Goal: Connect the IoT network with the program developed in phase one.

Personnel: Mohamed and Selman

Required Expertise: Programming expertise and a solid understanding of the code

developed.

Milestone: Establish the connection and start testing.

2.9 Work Package 9: Hardware

Goal: Test and debug.

Personnel: Selman and Omar

Required Expertise: Data visualization and debugging skills.

Milestone: Perform testing on the program, collect and analyze the results.

2.10 Work Package 10: Writing Final Report

Goal: Write the final report paper of the project

Personnel: All team members.

Required Expertise: Decent writing skills and a solid understanding of the project.

Milestone: Complete the final report.

15

3 Stakeholders

Our project is concerned about classifying rogue and potentially-malicious IoT de-

vices within a vicinity. The first thing that comes to mind are security firms and

enterprises that require security implementations to be sure that no malicious or un-

recognized IoT devices are being placed in a restricted facility. Such firms include,

but is are not limited to; major governmental bodies responsible for surveillance and

covert operations (e.g. NSA, FBI, CIA, etc.), security firms as this can be a product

for them to use in their own security services (e.g. G4S), even research centers like

QCRI could be interested in using our project in a bigger scale solution that uses IoT

device classification as a modular component.

As for smaller scale deployments, this would include regular households that would

like to monitor its IoT network activity should there be an abnormal traffic behaviour

caused by malicious devices or unrecognized devices that may not be known to exist

by the household occupant.

An example of a scenario where a rogue IoT device might be of concern to all of

the aforementioned stakeholders would be an IoT spycam that has been unknowingly

installed as a part of a privacy-invading scheme, this would be an obvious thing to

detect in an environment where IoT cameras are nonexistent as the stream would

stand out apart from the rest. It would require a more sophisticated system to be

able to identify such a rogue device on a network that already has several IoT cameras

connected. This is especially common in large enterprises, which may value its security

greatly, and therefore may be interested in investing in the HARPY system.

16

3.1 Input from Stakeholders

3.1.1 Siemens

We met with Mr. Tewfik Timeridjine, the head of digital grid in Siemens Qatar. We

walked him through the project and then we got the following feedback from him.

Firstly, he suggested that adding the SBC would add more traffic to the network,

and its activity would cause more congestion. So he thought that we should consider

this when we look at our project from a commercial point of view. Another point

he mentioned was that the time scales will create periodic traffic, which in turn will

cause traffic congestion as well. To solve this issue, he suggested that we look into

what is referred to in the industry as ”detection-on-exception,” which means that

the device will only talk if there is a change in the information. Adding to that, he

advised us to add a notification system to notify the user whenever a new device is

detected, because he said that the machine should remind the user instead of the user

reminding the machine. Another main point Mr. Timeridjine discussed with us was

the universality of our product. It is extremely vital to ensure that our product works

with all environments if we plan to introduce Harpy to the industry.

All in all, Mr. Timeridjine was happy about the outcome of our work and he

was impressed by the simplicity of the interface, and the pipeline organisation of the

project. He finally advised us that the next step would be thinking about how to

protect after detection.

17

3.1.2 Ministry of Interior in Qatar

We contacted the Ministry of Interior in Qatar and we arranged a meeting with one

of their representatives. We presented our project to him briefly and showed the fea-

tures of it and its potential. We asked for his advice and recommendations to improve

the project.

He mentioned two main points. The first one is that we must define the assets in

the area where our device will be deployed and feed this to the database as a best

practice. His second point was that capturing packets is very consuming when it

comes to the resources; it uses more power with the working time, especially for big

enterprises where there are hundreds of IoT devices, and it can cause the network to

be heavier because of the continuous capturing.

4 Test Devices and Procurement

In order to test the efficacy of the HARPY system, we would need to simulate its

behavior using a set of devices that would interact with the SBC. Different devices of

various types would be used as a way of challenging the setup’s ability to successfully

classify one IoT device type from another. It is worth noting that a certain budget

is required for the procurement of these devices for the sake of the experiment. The

details are shown in the list below. Note that those devices are selected to best match

with the data-set acquired from a previous research on IoT device classification. Cer-

tain items are different from that of the ones used for the data-set acquired. That is

due to unavailability or high prices required to acquire the exact items.

18

• Echo Dot (3rd Gen) w/Clock - $60

• Kasa Smart Plug by TP-Link (2-Pack) - $25

• Wyze Smart Cam - $20

• WiFi Chromecast - $30

• Google Nest Hub - $90

In addition to these items, a member of the team happened to have several Philips

Hue lights and a switch available for use in the testing phase.

19

5 Literature Review

5.1 IoT Devices Recognition Through Network Traffic Analysis

The team studied a conference paper titled “IoT Devices Recognition Through Net-

work Traffic Analysis” [1] where the authors explain their work on identifying and

classifying IoT devices based on their network traffic. In their paper, they presented

multiple methods to process the traffic data. Their results achieved an astounding

99.9% accuracy rate.

Their method was to extract bidirectional flows described by features like the size

of the first N packets sent and received, along with the interval times. The Network

traffic collected by a Raspberry Pi is firstly split based on MAC addresses, then

the bidirectional flows along with their timestamps and protocols are extracted from

the files. They only keep the TCP flows because all devices use HTTP or HTTPS

protocols. All the flows then get merged into a single data-set and reordered based

on their timestamps. Finally they use a classification algorithm to filter the data

and identify the devices. They introduced six different algorithms that would help

us in our project, as we are planning to process our data through a machine-learning

algorithm to classify the IoT devices. After a thorough testing phase, they found

that the best algorithm was Random Forest. However, we can not fully rely on this

because in their work they only tested a network consisting of only 4 IoT devices,

whereas we are targeting a bigger sized network in our project.

20

In this paper the authors discussed very crucial points regarding the process of

classification which our project heavily relies on, such as; the metrics used to assess the

machine learning algorithm (precision, recall, and F1 score), the averaging technique,

and the relation between the number of packets N and the accuracy of the results.

This information will be very beneficial for us in the process and will help us in so

many ways to accomplish the target of our project.

5.2 Automatic Device Classification from Network Traffic Streams of In-

ternet of Things

It is of the essence for the algorithm to be scalable into larger network deployments

with the ability to classify more than just 4 devices, note that the number of active

IoT devices is projected to reach around 22 billion [2]. The problem with scala-

bility is the potential computational cost, we have been looking out for the most

computationally efficient algorithms, that is, the most accurate ones for the compute

time required. A paper titled “Automatic Device Classification from Network Traffic

Streams of Internet of Things” [3] proposes a method involving a Long Short-term

Memory + Convolutional Neural Network (LSTM-CNN) cascade model. The method

proposed can supposedly maintain a high classification accuracy without the restric-

tive constraints required by an algorithm such as Random Forest e.g. does not require

matching hardware and firmware to have the same classification. So new models and

vendors that are unfamiliar to the trained set can still be able to identify the semantic

type of the device based on the network stream, which often has its content encrypted

in SSL, and that is fine since the headers are all that is required by the model.

21

5.3 Investigating the Dark Cyberspace: Profiling, Threat-Based Analysis

and Correlation

This paper [4] is written by researchers from Concordia University, Canada. Discussed

in this paper: profiling the darknet traffic, threat analysis, and threats correlation.

Darknet, as defined in the paper, is “a set of unallocated network addresses and

communication ports that belong either to the public cyberspace or to a specific

organization. Such unallocated space could be maliciously utilized to launch cyber

attacks.” First, the researchers start by profiling the darknet traffic: differentiating

darknet packets, identifying the major protocols that are used in darknet traffic,

profiling darknet application protocols, studying source and destination distributions

of IP classes in the darknet traffic, identifying the resolved domain names in darknets,

pinpointing the destination ports, and performing darknet geo-localization. Then,

they executed threat-based severity analysis by implementing two open-source NIDS

(Network Intrusion Detection Systems) which are Snort and Bro. The NIDS used

were configured with rule sets from the Sourcefire Vulnerability Research Team and

The Bro Network Security Monitor. After feeding the NIDS with the darknet data,

an outcome of different threats with their type and priority is given. Lastly, they

study threats correlation which is out of our project scope. We contacted one of the

authors and we had a chance to get a sample of the darknet collected data. We will

use the data to check if the IoT devices will go rogue and behave maliciously similar

to said data. Secondly, we plan on using Snort and Bro to check the data generated

by the IoT network that we will have later, and figure out if the data has any threats

or not.

22

5.4 Classifying IoT Devices in Smart Environments Using Network Traf-

fic Characteristics

This paper [5] discusses how to use certain characteristics within the packets, such as

port numbers, protocols and domain names to identify a device’s semantic type based

on a training set involving a variety of devices, including cameras, weather stations,

light bulbs, hubs and non-IoT devices. The paper demonstrates a multi-stage classi-

fication architecture that identifies devices using their packet streams and abstracts

features from them. It accomplishes this by isolating the traffic in a capture file down

to a single device of choice using a tool called Joy. It then takes the port numbers,

domain names and cipher suites of each packet in the filtered stream and feed them

into a Naive Bayes Multinomial Classifier (First stage), this would give out a class

identification along with a confidence value associated with it.

For the second stage, a series of other abstractions based on the entire stream,

rather than per-packet data, are taken. They include packet flow rate, volume and

duration. Along with sleep time, DNS interval and NTP interval. All of these, com-

bined with the output of the previous stage, are fed into a Random Forest classifier to

output the final classification and confidence value for the device of interest, originally

isolated via Joy.

23

5.5 Detecting Volumetric Attacks on IoT Devices via SDN-Based Moni-

toring of MUD Activity

Recent reports show that attackers continue to exploit insecure IoT devices to launch

volumetric attacks in the form of DoS, DDoS, brute force, and TCP SYN/UDP

flooding. IETF has recently proposed the Manufacturer Usage Description (MUD)

framework, in order to avoid this issue. As a result, vendors and producers of IoT

devices should specify the intended behavior before putting them out in the market.

The MUD specification has been approved as an RFC that motivates producers to

embrace this standard when competing with other manufacturers. This specification

allows an operator to lock down the network traffic of the IoT device using access

control lists (ACLs) derived from its MUD profile. Yet there are some attacks that can

be launched on IoT devices while still conforming to their MUD profiles. In this paper

[6] they only consider volumetric attacks that are not prevented by the MUD profile,

since its ACLs simply allow or deny traffic, and there is no provision to limit rates. To

solve this problem they developed a system that learns expected patterns of MUD-

compliant behavior for each IoT device by monitoring its activity via a combination

of coarse-grained (per-device) and fine-grained (per-flow) SDN telemetry at various

time scales, and has the capability to detect volumetric attacks and the specific traffic

streams that contribute to it.

24

To develop their system they used an OpenFlow switch, Faucet SDN controller,

and MUD policy engine. Their solution was released to the public as open source

to the community. The paper [6] also highlighted other approaches to solve this is-

sue, such as the signature-based approach, which in turn was proven inefficient for

addressing the and growing security issues that come with the proliferation of IoT

devices. This paper suggests that anomaly detection holds promise as a way of de-

tecting new and unknown threats. However, despite extensive academic research it

has had very limited success in operational environments.

A valid MUD profile contains a root object called “access-lists” container that com-

prises several access control entries (ACE), serialized in JSON format. Access-lists

are explicit in describing the direction of communication, i.e. from-device and to-

device. Each ACE would match on source/destination port numbers for TCP/UDP,

and type and code for ICMP [6]. The MUD specification also distinguishes local

network traffic from internet communication. The authors of this paper only released

the MUD profiles for 28 consumer IoT devices as of the date of the paper publication.

This paper [6] and the work demonstrated in it show big potential. It can be of

a great help to the team as the MUD profiling system would make the classification

process easier and faster, by cutting edges, and providing data that the team need in

a simpler and more compressed package. This paper [6] discusses many other aspects

but they were not mention here as they are completely out of the scope of the project.

25

6 Methodology and Experimental Setup

6.1 Joy

The joy tool [7] essentially takes in multiple PCAP files, processes them and outputs a

JSON-formatted summary of the network packets according to the parameters passed

upon invocation. It can also capture packets using its “online mode” or when the

interface is specified as an input parameter.

Joy provides many options on the sort of information that can be extracted from

each packet, such as HTTP metadata, DNS queries, TLS, DHCP, SSH, IKE, etc. All

through different data-related input parameters. This tool would enable us to take

an IoT data-set and extract the necessary information required for the framework.

The JSON structure allows easy data extraction which helps the developer to work

on translating the data into a format that is compatible with the framework.

An example of a joy command is shown here:

Figure 2: Joy Code Example

This takes a test file a.pcap, goes through all the packets, stitches together packets

belonging to the same client-server connection session (bidir=1), and then reports

HTTP (https=1) and DNS (dns=1) data, if any. Then finally, it dumps the JSON

output in a specified testOut file using the output parameter, instead of using stdout

to print the result. This would give us the ability to transfer the output of the joy

tool for use in other components of the framework.

26

The output file after execution is displayed below.

Figure 3: Joy Output After Execution

Notice the configuration section printed out at the top of the JSON output. The

parameters initially passed through the command line are reflected in the config entry.

27

6.2 The Sleuth Kit

The Sleuth tool is a program that comes alongside Joy. First, we feed it with JSON

or PCAP files, then choose our criteria and filters, then we get the desired output.

The operations used are pretty much similar to SQL syntax.

One of the filters can select particular elements and exclude the others, which is

the caste in the --select command. An example of that would be: sleuth --select

packets[b]. This selects only the bytes from the packets. Another one is the --where

command which filters every object against this condition. The command --dist is

used to calculate the distribution of the objects, number of appearances in the stream,

and the total number of objects. Others are --groupby, --sum, --no stitch, and

--fingerprint.

All in all, the tool is fairly easy, pretty straightforward and is capable of analyzing

network capture files, and gives a readable output that we can use in building our

model.

This is a screenshot of the input:

Figure 4: Sleuth Code Example

This is the command where we select only the bytes from the packets.

28

A snippet of the output:

Figure 5: Sleuth Output After Execution

29

7 Input System

The initial Machine Learning model was trained using a data-set generated by an

earlier research by a group of researchers from The University of New South Wales

(UNSW), the data-set consists of network captures spanning a period of approxi-

mately one month, separated in chunks of one day long PCAP Capture files, therefore,

for the sake of easier coding, the PCAP files were named 1.pcap, 2.pcap, 3.pcap,

etc. Each day is stored in one PCAP file. For other data-sets, this does not necessar-

ily need to be separated into one-day intervals as they can instead be separated into

smaller intervals e.g. three PCAP files for one day (8 hours each), or be combined to

make bigger intervals e.g. two days in one PCAP file.

7.1 Joy Shell Script

The shell script in Figure 6 extracts network flow information via a tool named Joy.

30

Figure 6: The original Shell Script.

31

The script iterates through each PCAP file, which consists of data captures each

spanning one day, while iterating through a list of MAC addresses, outputting JSON

flows for each device in each day. The JSON files end up being named in a format

like this: inputFileName deviceNumber.json

The joy command takes the following arguments:

• output = the JSON file output

• bpf = Berkeley Packet Filter, can be used to filter the captures down to a single

MAC address i.e. ether host <mac address>

• bidir = Accounts for packets flowing in AND out (bidirectional).

• dns = Include DNS traffic info in the flows, which would be used to extract more

features.

• http = Include HTTP traffic info, it would also be used to extract more features.

• The last argument is the capture file, which would be the input for the Joy tool.

The shell dumps the output set of JSON files into a subfolder named json files.

Each JSON file consists of a set of flows, and each flow consists of flow-related in-

formation such as destination address and flow size, all of which would eventually

be aggregated into features that are handed over to the machine learning model for

classification. The JSON files would then be used for a Python script that extracts a

set of features that would be used as the input for the machine learning model.

32

The original shell script and python module was provided by Dr. Ihab Mohammed

from the Western Michigan University. The python module consists of code that

extracts features from the output of the joy commands executed via the shell script

previously discussed. Information including, but not limited to, the number of unique

servers, transmission/sleep times and sizes of flows, are aggregated over pre-defined

intervals for each device separately. The output would be a CSV file where each

entry is the aggregation of the aforementioned features over a single interval for a

given device. As of the date of writing this report, the Harpy shell launcher as

well as feature extraction scripts, are available on GitHub on https://github.com/

selmantabet/harpy.

7.2 Feature Extraction Scripts

The original script required manual code overwrites for different data-sets as well

as different MAC lists since the relevant values were initially hard-coded into the

Python extraction module. This Python code was heavily modified in the name of

modularity, that is, the script needs to be something akin to a black box that can

perform focused tasks and only those focused tasks, rather than doing everything

from one script. Automation is a long-term goal that is kept in mind as Harpy was

developed. The code was broken down to different function definitions that can be

called via a different Python module that acts as the main Harpy shell launcher,

shown in Figure 7.

33

https://github.com/selmantabet/harpy
https://github.com/selmantabet/harpy

Figure 7: The Launcher script.

This new module takes arguments via the shell, where certain paths are to be

defined. This would accommodate to a variety of environments with different file

structures. It is worth noting that this module was made with back-end developers

in mind, the end-users (see Stakeholders) are not supposed to directly interact with

this and instead, preprocessing and data acquisition should require the least amount

of manual human intervention and is best left automated by relying on system calls

rather than manually-issued shell commands. The original structure required the

original developer to manually redefine values for a specific data-set, and the changes

discussed here are made as steps towards the full automation of Harpy’s preprocessing

element. This was all done under the “Compartmentalization Update – V3.2”.

Major improvements to the feature extraction code were made; the set of extracted

features was enhanced by the addition of a new attribute; the Registration Data Ac-

cess Protocol (RDAP) record details from an IP address in a Joy flow. It is worth

clarifying that RDAP is often referred to in the code by the legacy standard WHOIS

and is interchangeably called WHOIS in this report as well. While inadvisable from

34

a viciously technical standpoint, it is done intentionally because the library used was

named after the legacy standard, while the queries themselves were in fact, RDAP.

They are just two different protocols achieving the same goal after all: querying

resource registration data from different sources such as Domain Name Registries

(DNRs) and Regional Internet Registries (RIRs).

The python library ipwhois was used to achieve this. A query is placed when

inspecting each IP address and the responses are received in JSON format, after

thorough inspection of different query responses, it was concluded that the key

named asn description often had the most descriptive string for a given IP, that

is, the strings were deemed to be identifiable information linked to registered en-

tities. So upon the receipt of the RDAP responses, each flow is marked with the

asn description string, and the number of flows containing the same IP addresses

within a single interval is aggregated, the asn description and the number of in-

stances of flows are then inserted into the CSV fields as a key-value pair.

The initial runs with this enhanced feature extraction script took several hours

to finish, this turned out to be caused by the overhead required to resolve bulk

RDAP requests. Because of the more static nature of WHOIS/RDAP records, an

approach towards optimization was to locally dump all resolved IP addresses with

their corresponding asn description values into a JSON file for use in future script

runs. This part was completed under the “Compartmentalization and Optimization

Update – V3.4”.

35

Figure 8: The launcher info.

7.3 New Data Acquisition

A set of IoT devices were procured specifically for the project, a Linksys router was

borrowed from the university and was flashed with OpenWrt firmware. The router

was used to connect all the devices together to form the LAN. And with the new

firmware, the team could install packages and have full control over the router’s con-

figurations.

At first, port mirroring seemed like the most logical method of capturing new

files; send all packets going in and out of the router into a designated port where

a PC with Wireshark may be plugged in and collect all traffic, which sounds easily

feasible on the surface. Due to the more complex nature of the router, it was not

36

as straightforward as it first seemed from internet research, this lead to a prolonged

halt to the progress where the team did not manage to get useful packets sniffed from

all of the router’s NICs, but instead it seemed like it only mirrored packets traveling

through the Ethernet LAN ports instead of the desired Ethernet + Dual-band Wi-Fi

collective. A team member reached out to several individuals through a variety of

networks, including Reddit and AlRayyan TV’s IT staff, seeking out for help on the

matter.

Due to the time constraint and lack of responses at the time, the team adapted a

different, less-than-ideal, but still effective method, which is installing tcpdump on the

router and having it run on the router’s side, while storing the capture files on a USB

plugged into its USB3.0 port. The capture dump is then transferred to a computer

on the LAN via SCP for further processing.

Configuring the router for this new method required setting up a partition for the

128GB USB drive, this guide describes the process step by step: https://openwrt.

org/docs/guide-user/storage/usb-drives

After that, a simple opkg install tcpdump command was issued, and the team

was off to the races. The first run was set such that a new file was created every 8

hours (argument -G 28800 seconds), shown in Figure 9.

Figure 9: The first capture run

37

https://openwrt.org/docs/guide-user/storage/usb-drives
https://openwrt.org/docs/guide-user/storage/usb-drives

While attempting to feed the newly generated PCAP dump to the Joy tool, we

realized that the BPF filter (mentioned earlier) was not being parsed correctly. The

errors printed by Joy are shown in Figure 10.

Figure 10: Error messages printed by Joy

After a quick investigation, we realized that the link-type printed when we issued

the first tcpdump command was LINUX SLL, which was not the one we wanted. This

was also confirmed by a Wireshark packet inspection of an arbitrary packet at the

data link layer, as shown in Figure 11.

Figure 11: Arbitrary packet inspection of a Linux cooked capture.

38

After much research and testing, we realized that the interfaces were arranged such

that the entire LAN can be captured from one interface displayed by tcpdump. This

was discovered on the realization that a bridge labeled as br-lan, was connected to

the entire Ethernet and WiFi collective, as displayed in the LuCI Interfaces menu

pictured in Figure 12.

Figure 12: List of interfaces displayed on OpenWrt LuCI.

39

The command tcpdump -D was issued to confirm the existence of br-lan, the

results are printed on Figure 13.

Figure 13: br-lan is available here, allowing us to capture all needed data.

Upon issuing the new tcpdump command (Figure 14).

Figure 14: The second capture run.

The link-type is exactly what it is supposed to be, Ethernet. The capture dump

was retrieved from the router via SCP for inspection, and Wireshark displayed the

correct format, as shown in Figure 15.

Figure 15: Arbitrary packet inspection showing the correctly captured packets.

40

Each output PCAP file was taken and renamed in a manner akin to the earlier

data-set, the same shell script was used but the MAC addresses were replaced with

the addresses of our own devices. The script was then executed to extract Joy JSON

files. The PCAP dump illustrated above was fed into the joy shell script, the error

did not appear and the JSON files were saved as expected, as pictured on Figure 16.

The data capture continued for a few days, all the devices were connected, and

a variety of activities were done in a manner resembling the average household, to

the best of the team’s ability; Amazon Alexa commands were issued to ask random

questions, Google Hub received the same treatment, several light control commands

were sent via the cloud as well as in-LAN.

Before letting the capture run for a long time, it was important to verify that

every packet was being properly captured, this was done by running the captures

for an instance, and in that instance, several commands from different devices were

issued simultaneously. The test capture file was then filtered down to each IP involved

with the earlier actions, and the packet flows were observed for each device and their

respective IP to see if the packets expected were captured, and they were.

41

Figure 16: Successful Joy output.

At that point, the data collection was left to run on an even longer 1-day inter-

val (-G 86400 seconds), just like the original UNSW data-set the team used in the

42

earlier stages of the project, with a minimal interruption involving the disconnection

of the laptop where the Secure Shell was running. To prevent the recurrence of such

an interruption and to maintain a smooth data collection process, tmux was used

to execute the command (Figure 17), then shell window was detached to keep the

process running after logging out of the SSH session, the 128GB space in the drive

was sufficient, so long as the capture files are moved out to the processing PC on a

regular basis and with the avoidance of downloads/uploads of massive media files like

high-bitrate 8K footage, HDR content, uncompressed music files and next-generation

high-budget video games, all of which could easily fill the drive if transmitted across

the network.

Figure 17: tmux for parallelizing workloads and keeping the capture process alive post logoff.

Comically speaking; the fact that a capture file was being transferred via SCP into

the machine for processing caused tcpdump to copy the entire SCP transfer during an

ongoing LAN capture, and once the copy was complete, the machine automatically

uploaded the 10GB+ capture file into a NAS drive array set up on a different LAN,

which resulted in the captured file in progress going from a few MBs to over 40GB in

a few minutes. To avoid this, tcpdump was terminated, and the transfers were carried

out immediately after the completion of the 24-hour interval by a team member on-

site, causing slight continuous shifts in capture start times due to the post-capture

transfer overhead.

43

7.4 Concerns and potential improvements

7.4.1 New Feature Overhead and Limitation

One of the milestones of the project was the integration of registry name fetching ca-

pability for use in the feature extraction function, in the earlier stages of development,

it was observed that looking up RDAP info repeatedly added an insurmountable over-

head which was deemed redundant during the rapidly successive runs. A solution was

devised where all newly resolved names were dumped into a local JSON file for future

executions. The caveat here is that RDAP records are not perfectly static but are

often slow changing as many registries remain the same and rarely get updated, most

registries are valid for at least one year and registrations are often renewed by the

same entity.

A future update planned involves the addition of a last updated key-value pair

into the local RDAP records dump, the value would consist of string representing the

date and time of the last time the local dump was updated. When the script runs

and recognizes that the local dump is too old – the threshold can be manually defined

here, this is up for future research – the script could proceed with wiping the record

clean and re-build a new record, this is a more näıve approach which would wipe

out correct and up-to-date record entries. A more intelligent approach would be to

re-structure the data format to include the last update date for every single RDAP

record entry, and re-query as necessary on an individual basis.

44

Another thing to keep in mind when using RDAP/WHOIS records as a feature

for classification is the lack of universal applicability. The feature is not always

viable in different regions as it was observed that many devices relied on some of the

major CDN services like Amazon and Akamai where different servers with potentially

different designated registry names may be used, it was observed when inspecting

feature extraction output files that certain asn description values carried additional

strings with them, possibly linked to geographical location, as marked in Figure 18.

CDNs are distributed across the world so that people (and devices) could easily and

efficiently access content using the nearest available servers.

Figure 18: Sample of a device’s extracted RDAP entry.

While the new RDAP feature does add some overhead to the preprocessing stage

of the system, it is worth noting that capturing live traffic in the first place can be

resource-taxing to the router responsible for mirroring traffic for the packet sniffer

to store and process. The continuous capture of packets around the clock can be

detrimental to the performance of the network. To address this issue, the packet

sniffing tool can be triggered to run when certain unusual behaviors are detected

from any device in the network, and only the traffic from that specific device can

be sniffed in order to minimize the resources allocated by the router, as mentioned

earlier, this is what has been referred to by one of the stakeholders as ”detect-on-

exception”. Such unusual behavior could stem from non-concerning issues such as a

sudden spike in activity attributed to rare actions such as device reconfiguration and

45

new user authentication, but can also be a signal to a malicious attack such as device

hijacking. Additional features to collect can include the addition of ports and a list

of protocols used, unusual protocols and ports can be an attribute of an anomalous

behavior.

7.4.2 Router/Switch Requirements

Due to the potential overhead, it is recommended to run this system with a router

that is capable of handling long data capture periods, with more on-board flash

memory, RAM, and CPU power. The prototype used a Linksys WRT-1900ACS,

which has a dual-core processor and 512MB of RAM, and day-long captures were

performed with little compromise to the overall bandwidth of the router, but sustained

transmissions caused by large file transfers can gradually throttle the bandwidth if

the router was not capable of handling the traffic. The router must be configurable

to allow for a sniffer to capture all the packets from the router’s perspective, which

grants the ability to see all packets going in and out of the LAN, as well as local

transmissions. Not all routers can be configured in such a way using their Original

Equipment Manufacturer (OEM/stock) firmware, and in some cases, flashing them

with alternative firmware may be the only option. This is particularly true for newer,

niche-marketed routers such as the ASUS ROG AX11000 and AXE11000, where the

target consumer is not expected to tinker with such settings in the first place (in the

case of those routers, the answer is Asuswrt-Merlin). On the other hand, enterprise-

grade managed switches are aimed for professional IT administrators and network

engineers, where the deepest level of access and the most fine degrees of control over

a switch’s configuration settings is expected, if not outright required. Therefore not

warranting the replacement of the OEM firmware in favor of something like OpenWrt.

46

7.4.3 Data-set-related Limitations

Feature extractions were done using a select set of intervals; 5 minutes, 15 minutes,

and 30 minutes. This was done to see how devices behave in different time windows.

The details would be discussed later in the report, but there is an argument to be

made; in certain real cases, some devices may behave in a way that could be deemed

absurd and anomalous when inspected within the confines of a limited time interval,

without context whatsoever. Meaning that in some cases, a short fixed interval would

in no way be representative of a device’s usual overall behavior. Case at hand; NAS

drives continuously pump out files in a media production studio throughout business

days, it is the norm in high-budget productions that each post-production unit is

connected to a major near-PB sized NAS drive connected by 10GbE and transmit

Gigabytes of data per second, continuously, for up to multiple hours. REDCODE

8K 12:1, 30FPS, HDRX-enabled Raw video footage is encoded at around 270MB/s,

multiple separate files for different projects would boost this to GB/s if multiple pro-

duction units were in place, more info here: https://www.red.com/recording-time

Such enormous streams of data may be the norm in some environments, while in the

context of the average household, this may be unusual. Hence why context is very

important, and accounting for all sorts of usage scenarios would most definitely come

in handy.

Lastly, the IoT network that the team set up is of a small scale but has allowed us

to collect live data for our own research. A much bigger IoT network with more device

variety would help in generating more robust data-sets that would lead to achieving

better classification results for more devices, taking account all the different kinds of

IoT devices demonstrating all sorts of different network behavior.

47

https://www.red.com/recording-time

More users interacting with the IoT network would also grow the data-set to ac-

count for different usage behaviors by different users. People that are home most of

the time would interact with the IoT devices differently compared to others who are

mostly absent and rarely ever interact with said devices. The situation is not ideal,

the team’s budget was limited and only a few devices were procured for testing, and

only a single person was interacting with all the devices regularly.

We see companies inventing all kinds of new IoT-capable devices regularly and it is

imperative that we be able to adapt to the rapidly changing market by improving the

detection system to account for any new types of devices demonstrating never-seen

before functions that may break into new classification categories.

48

8 Machine Learning Software Program

8.1 Introduction

This section of the report will be a walk-through of the software part component

of the project. This part of the project includes all the elements that perform the

process of studying the traffic data collected and prepared, then running it against

a machine learning module that will determine the type of the device based on the

traffic behavior. After this is processed and the device type is determined, the pro-

gram, in turn, will update the real-time database on Firebase, thus the detection will

also be shown on the interface (App) in real-time.

We will split this section of the report into multiple sub-sections, each will contain

a description of one of the building blocks of our machine learning software program.

8.2 Machine Learning Program Functionality

The main functionality of our machine learning program is to study the traffic cap-

tured through the router, and predict the device type based on it. Each device

connected to the network will have a unique network behavior that makes predicting

its type or category possible. The device network behavior is determined through

a set of features that we chose after thorough research. What the machine learning

model essentially does is that it compares the network traffic packet associated with

a specific device with the previously studied packets while training the model, based

on that, the model predicts the device type.

49

Essentially, the goal is to reach the highest prediction accuracy possible. The

accuracy of the machine learning program depends on a variety of factors, such as

the size of the training data-sets, the prediction features, and the correctness of the

input packet. In this project, we tried to maximize the efficiency and accuracy of our

machine learning model by taking all these factors into consideration.

In an attempt to give the user more options and provide them with more flexibility,

we decided to give the user the ability to choose from one of the three time-scales

for capturing. However, as a consequence, there is a trade-off between the speed

of capturing and the accuracy of prediction, i.e. the longer the capture, the higher

the accuracy would be. During implementation, we created three machine learning

models, each tailored to one of the time-scales chosen.

This component of the project goes through a few main stages which are the

following:

1. Prepare the data-sets for training each machine learning model.

2. Train the models.

3. Prepare the testing data.

4. Collect the testing results.

5. Listen to captured traffic.

6. Extract the time scale chosen by the user from the database.

7. Choose the model to use and feed the captured file to it.

50

8. Go over the captured data in the sheet and predict the devices with the ML

model.

9. Extract the device information.

10. Update the Firebase database with the predicted devices.

We will describe these stages in further detail in the following sub-sections.

8.3 Machine Learning Algorithm

There has never been a better time to get into machine learning. With all the re-

sources available online, machine learning became a field that is democratized by the

internet. There are many machine learning algorithms available, such as; Linear Re-

gression, Decision Trees, and Neural Networks. However, in this project, we decided

to use the Random Forest algorithm to predict the device type and perform classifi-

cation.

Random Forest is an easy to use and flexible machine learning algorithm that pro-

duces, even without hyper-parameter tuning, great results most of the time. Because

of its simplicity and diversity, it is one of the most used algorithms.

The way Random Forest works is that it simply builds multiple decision trees and

merges them together to get a more accurate and stable prediction. Random Forest

has nearly the same parameters as a decision tree, but it enhances the performance by

merging multiple decision trees together, the figure below visualizes the functionality

of the Random Forest algorithm:

51

Figure 19: Random Forest algorithm functionality simplified

Adding to the advantages we mentioned above, we also chose Random Forest

because it adds some additional randomness to the machine learning model when

growing trees. Therefore, instead of searching for the most important feature while

splitting a node, it searches for the best feature among a randomly selected subset

of features. This leads to a wide diversity that results in a better machine learning

model.

8.4 Data Preparation

The first step in writing a machine learning program is preparing and cleaning the

data files for training. Data preparation is needed because the data received from

the data acquisition stage might contain some errors or deficiencies that need to be

fixed before feeding the files to the machine learning model. As an example, errors

can be caused by rows that have missing pieces of data. Moreover, some of the fea-

tures included in the data files are only needed for the data acquisition stage, so

these features need to be removed as they might affect the accuracy of the model.

The figure below shows a snapshot of the training data-set that we used in this project.

52

Figure 20: Snapshot of training data-set

We created a tailored data-set containing around 800,000 rows of data for each

of the three machine learning models. We obtained the data-sets from the The Uni-

versity of New South Wales in Sydney. They have a public website [12] containing

a data-set originating from the previous research efforts on IoT device classification,

consisting of 20 days worth of captures for over 20 devices. When running a python

piece of code to calculate the number of devices contained in one of the files according

to their type, this is the output we got:

Figure 21: Data-set file analysis

53

The device types or categories were chosen by us. We tried to be as general as

possible and choose classification types that cover most of the IoT devices that we

might capture.

Each of the data-sets contain a set of features that will be used to train the model.

The features we used to train the model are the following:

1. Total Sleep Time (Seconds). It indicates the time duration the device was not

active on the network.

2. Total Active Time (Seconds). It indicates the time duration the device was

active on the network.

3. Total Flow Volume (Bytes). It indicates the volume of the traffic flow from the

device into the network.

4. Flow Rate (Bytes/Second). It indicates the rate of the data flow from the device

into the network.

5. Average Packet Size (Bytes).

6. Number of Servers. It indicates the number of servers the device is connected

to.

7. Number of Protocols. It indicates the number of network protocols used by the

device.

8. Unique DNS. It indicates the unique domain of the device.

9. DNS Interval.

10. NTP Interval

54

11. Connection Type. It indicates whether the device is wired or wireless.

12. RDAP/WHOIS Record. It shows the number of connections associated with the

registration name associated with an IP.

These are the main features that are going to be used to train the model as inde-

pendent variables, which the model will use to predict the classification type of the

device. We conducted a thorough research to determine the most useful and unique

features in order to get the highest possible accuracy.

It is also important to mention that a new 12th feature was introduced at a later

stage in the project which was indicated previously in the data processing section of

the report, which is the RDAP/WHOIS feature. After adding this feature we noticed

an increase in the accuracy of the machine learning model.

On the other hand, we have only one dependent variable in the training data-set

which is the device type. There are also some of features that are unnecessary such as

the device co which was used in the data acquisition stage. Also, we avoided using

features like the device name or the MAC address because they can lead to errors

and would affect the accuracy of the model.

55

For the data preparation process we used the Python library pandas that is “Pan-

das is a high-level data manipulation tool developed by Wes McKinney. It is built

on the Numpy package and its key data structure is called the DataFrame.” [13] The

captured files of the network traffic are fed to the machine learning model in a .csv

format. The first step is to open and read the files, and we do it with the following

python commands:

Figure 22: Open the CSV files

After loading the files, we start by handling the missing values to remove faulty

rows. This is an important step to assure the correctness of the machine learning

model training. What we basically do is drop any row of data that is missing values.

We achieve that using the following commands:

Figure 23: Drop any row of data with missing values

56

We also need to drop the unnecessary features in each data-set which we mentioned

above, and we achieve that using the following command:

Figure 24: Drop the unnecessary features

The next step is to encode any non-integer features to allow the model to process

it. For this specific function we used the One-Hot encoder from the python library

called sklearn, which we later on used to create the Random Forest machine learn-

ing model. Essentially, the One-Hot encoder represents categorical variables as binary

vectors. At first the categorical values are mapped to integer values. Then, each of

the integer values in represented as a binary vector that is all zero values except the

index of the integer, which is marked with a 1. After importing the OneHotEncoder

from the sklearn.preprocessing library, we used the following commands to en-

code the categorical values in the data-sets:

Figure 25: Encode the categorical values

In our case, we only have to encode the RDAP and connection type features, as

they are the only non-numerical features in our training data-sets.

57

The last step in the data preparation process is to define the dependent and inde-

pendent variables. We have only one dependent variable which is the device type, it

is basically the target that we want the machine learning model to predict. The rest

of the features are used as the independent variables, and they are the 12 features we

previously listed. We split the features into X data-set (representing the independent

variables) and Y data-set (representing the dependent variable). To achieve this we

run the following command to create the Y data-set:

Figure 26: Create the Y data-set

And the following commands to create the X data-set:

Figure 27: Create the X data-set

Where we basically store all the features except for the device type by dropping

it.

58

8.5 Machine Learning Model Creation and Training

As we mentioned above in this section, we decided to use the Random Forest algo-

rithm and we explained the reasons behind our choice, and how the algorithm works.

Now, we will go over the process we used to create and set up the three machine

learning models in our projects. As we need three models, one for each of the three

time scales, we create three Random Forest models and train each of them with the

respective network traffic data-sets that we prepared.

For this process we use the Python library sklearn. Sci-Kit Learn (sklearn) is

a Python module integrating a wide range of state-of-the-art machine learning al-

gorithms for medium scale supervised and unsupervised problems. This package

focuses on bringing machine learning to non-specialists using a general-purpose high-

level language. Emphasis is put on ease of use, performance, documentation, and

API consistency [14].

The first thing we do is import train test split from the sklearn library, we use

it to split the data-sets into two parts, one for training and one for testing, then we

store each inside a dedicated variable to use in the model creation command. We also

had to indicate the size of the testing part, in our case, we decided to make it 20%

of the data-set size. A shuffle attribute was also selected to be true to help achieve

maximum accuracy. To achieve this, the following commands were used:

The next step was to create and train the model. First we import RandomForestClassifier

from sklearn.ensemble and then use it to create our three machine learning models.

To do so we used the following commands:

59

Figure 28: Split the data-sets for training and testing

Figure 29: Import RandomForestClassifier from sklearn

After initializing the models, we train them using their corresponding training

data-sets, which contain the features we captured in the data acquisition stage, then

cleaned and prepared in the data preparation stage. To train the models, the follow-

ing commands were used:

Figure 30: Train the model

Now the machine learning models are trained, setup, and ready to be used for

classification and prediction.

60

8.6 Testing and Results Observations

After we trained the machine learning model, we tested it to see the accuracy of

prediction and the importance of each feature. To run a test on the model with the

testing data-sets that we created, we used the .predict() method as shown in the

code below:

Figure 31: Test the model

Then we imported a sub-library called metrics from sklearn to analyze the test-

ing results and acquire the importance of each feature. We used the following com-

mands to find the results:

Figure 32: Find the results

We repeated the same process for each of the three time scales to observe the dif-

ferences. The following figures show the Python output that shows the performance

stats of each machine learning model:

61

Figure 33: Performance analysis for the 5 minutes time scale model

Figure 34: Performance analysis for the 15 minutes time scale model

As we predicted, we observed that the accuracy increases when the time scale in-

creases, and this happens because the bigger the time scale, the more data will be

captured, hence the more accurate the predictions will be.

62

Figure 35: Performance analysis for the 30 minutes time scale model

However, it is important to mention here that there is a key trade-off for the user,

where the user has to choose between speed and accuracy. If the user chooses a bigger

time scale, the results will be more accurate, but the detection of new devices will be

slower. On the contrary, if the user chooses a smaller time scale, the results will be

less accurate, but the detection will be faster.

The testing accuracy results might seem quite high and close, but we believe that

was due to the fact that we did not use a huge variety of devices, where our train-

ing and testing data-sets contained around 20 devices. However, we tried our best

to include as many devices variations as possible. We believe that the results will

have the same behavior that shows the direct correlation between the time scale and

the accuracy of the model, but the accuracy will definitely be lower if we use bigger

data-sets.

63

Another key observation was the importance of each feature in the prediction pro-

cess. The average importance of each feature is illustrated in the chart below:

Figure 36: Importance of each feature

8.7 Listening and Updating the Real-time Database

The final step in this section of the project is what we think of as the engine of Harpy.

In this part, we will make the program listen to the captured data that will be fed

to the machine learning program through the data acquisition program. The data

acquisition program will update the CSV file that will be stored in the SBC (Tinker

Board) which will be running the machine learning model. Based on the changes, the

machine learning program will add any newly detected devices to the Firebase real-

time database, which in turn will automatically update the mobile phone application

real-time as well.

64

The first thing we needed to do is to configure the Firebase real-time database.

For this we used the Python library pyrebase. To achieve this, we used the following

commands:

Figure 37: Firebase Configuration

Through this piece of code, we connect the machine learning model to the Firebase

real-time database and obtain the time scale selected by the user in the application.

Based on the time scale value obtained from the database, we choose the correspond-

ing machine learning model to use for prediction.

65

After we configure the Firebase database, we prepare the captured file in the same

way we prepared the training data-sets. Finally, we run a continues program that

listens to new devices, and updates the real-time database accordingly. This program

will run based on the time scale chosen by the user, so if the user selects the 5-minute

time scale, the program will run every 5 minutes. This is achieved using the following

piece of code:

Figure 38: Listen and update - 1

66

Figure 39: Listen and update - 2

Figure 40: Listen and update - 3

9 Output System

9.1 Overview

After we process the captured traffic data, analyze it and classify the devices, we need

to give the user the output in the most friendly way possible. Two methods will be

used to alert the user and allow them to interact with Harpy.

The first method is the hardware method, where a small hardware device (the

SBC, as mentioned earlier), that has the shape of a puck, will be placed in the vicin-

ity. This device will alert the user by lighting red if Harpy detected an anomalous

deployment of any IoT device. The hardware device will consist of a Raspberry Pi,

with an LED attached to it. We plan to use a WiFi equipped Raspberry Pi in order to

connect it to the real-time database that we will talk about later on. The Raspberry

Pi will flash a red light in the case of an alert.

67

On the other hand, our second method is a mobile phone application. As we

thought that the user might want to get notified about an alert even if they were

outside the premises, which in turn would help our users take immediate action

and stay updated anytime and anywhere. The application will consist of the major

parts as shown in the appendix. A sign-in page, to provide security for the user.

A dashboard page, where the user can view details about their devices and view

the recent activities. And a devices management page where the user can manage

by adding or removing their personal IoT devices that they want the program to

recognize. The app will be developed using React Native and it will function on both

platforms, iOS and Android. In the case of an alert, the user will receive a notification

on their mobile device through the application.

9.2 React Native

React-Native is a JavaScript (JS) framework for developing native mobile applications

in both iOS and Android. The term React-Native was derived from React which is

a JavaScript library, and native which is a mobile application type [8]. React was

created by Facebook in 2013 that helps build user interfaces for web applications. It

was well received by the public, making it the 5th most starred repository on GitHub

as it allows for modular and reusable coding by utilizing a component structure [8].

A native app means that the app is developed for a particular operating system such

as iOS or Android. To code such apps, one can use Swift for example to build an iOS

native app. And to build a native app for Android, Java can be used.

68

However, the beauty of React Native is that it allows you to build one native app,

and write one piece of code, but then it compiles the .js file into two executable; one

for iOS and one for Android. This is what makes React Native very special and it

explains the growing use of this programming language. That is the main reason we

chose to build our app using React Native. Native mobile apps have access to the

device’s APIs and features making them high-performing and reliable [8]. Therefore,

they can provide optimized performance and can take advantage of the latest tech-

nology within the mobile phones and tablets compared to non-native apps. Native

apps installed directly on a mobile device and does not make use of WebView which

ranks it higher than non-native ones in terms of performance. Although it feels and

looks like a real native application, React-Native is coded by simply using React and

JavaScript. Real native apps have to be coded in two different languages, one for iOS

and another for Android. They always outperform apps coded in a non-native fash-

ion, but they require more time, people, and financial resources, therefore, developers

opt for React-Native which is cross-platform but also native in a way [8].

As for our project, we plan to use React Native to build a mobile app that connects

to an online real-time database that we will create using a backend service. This

database will be the bridge that connects our machine learning module with our

output system. React Native works in our favour here as it has many built-in libraries

that support backend services like Firebase and AWS. We have explored React Native

and built a skeleton code for our three main components of the app, as shown in the

appendix below.

69

9.3 AWS

AWS includes many services for IoT devices, databases, machine learning and an-

alytics. The database service called AWS Simple Storage Service or AWS S3 is a

large cloud-based database system where users can store any kind of files and then

access them anytime and anywhere. Big companies such as Netflix and AirBnB use

this service to back up content and files that are served to the users of the services.

The service uses the concept of buckets and tags to categorize stored objects. This

makes it easier to update the objects when using the S3 batch operations, which

allows objects to be managed and moved in groups [9]. AWS Lambda functions can

be triggered to manage specific parameters among the objects.

Services related to Internet of Things device management and controls are also

provided by AWS IoT Events, IoT Core and IoT Device Management. IoT Events

allows easy detection of events from devices and sensors, analysis of the data collected

and response to those events [10]. Collecting data from devices and acting on that

data enables more connections between them and makes the devices smarter and bet-

ter automated. Using IoT Core and Device Management, an inventory of IoT devices

can be created, managed and organized. IoT Core is a cloud based platform that

uses MQTT and Websockets protocols to allow for a publisher/subscriber connection

between it and the devices [11]. From such a structure, multiple devices can have

their data published to the cloud and accessed by subscribers that can use that data

for analysis or decision making processes. Information about the temperature, en-

ergy consumption, functionality, time used and user patterns can be useful from IoT

devices in order to create better applications that will make the use of such devices

more efficient to the user.

70

All the features and services mentioned above are very interesting and can serve

many purposes. However, they are more focused on the performance of the native app

rather than the speed and security of the app’s functionality. They perform powerful

analytics and operations, but they all come with big costs.

9.4 Firebase

Firebase is a mobile and web development platform developed by Firebase Inc. and

then acquired by Google in 2014. They are considered the direct competitors of AWS.

Firebase offers a wide range of backend services, from analytics to cloud messaging.

However, for our project, the main services that concern us are the Firebase Au-

thentication service and the Firebase Realtime Database service. These two services

are extremely crucial in the development of our mobile application as they will allow

us to assure user privacy and create the bridge between our machine learning, the

hardware component and our software output component.

Firebase Authentication is a service that can authenticate users using client-side

code. This service allows the developer to build an efficient and secure login system.

It functions in a similar manner to AWS’s user pool. However, it focuses more on

security than quantity, as it offers a vast variety of authentication and login options,

such as logging in with email or even authenticating the user through SMS. It pro-

vides very powerful APIs to perform such operations and implement such features.

It is also pretty easy to integrate into a React Native application as shown in the

appendix section below. Moreover, it supports social login providers like Facebook

and Google. Additionally, it includes a user management system whereby developers

71

can enable user authentication with email and password login stored with Firebase.

As our project’s main goal is to provide security for the user, it only makes sense that

we build the application with a solid security login system, in which this service will

come in handy.

Firebase provides a real-time database and back-end as another service. The ser-

vice provides application developers an API that allows application data to be syn-

chronized across clients and stored in Firebase’s cloud. The developer here can start

using the real-time database which can secure their data by using their own server-

side-enforced security rules. As for our project, we need a gateway to connect the

machine learning program to the mobile app that will show the output. Using Fire-

base’s real-time database, the ML module will update it every time a new IoT device

is detected. On the other side, the application will be connected to the same real-time

database as shown in the appendix section below. It will basically check the database

frequently and reflect the output to the user. In the case of an alert, the application

will send a notification to the user through the app.

9.5 Firebase vs AWS

AWS has more options for features and services that they provide. However, they

are mostly out of the scope of our project. It is also expensive and more difficult to

set up than Firebase. On the other hand, Firebase is very easy to set up (as shown

in the appendix section below) and more related to this project. With Firebase

Authentication and Firebase Real-time Database services, the process of building our

mobile application and connecting it to our machine learning module will become

much easier and more efficient. That is why we opted to use Firebase in this project.

72

9.6 The Single Board Computer

In this project we need a device that can capture data from the network and run the

machine learning algorithm to determine the types of the devices, and finally update

the database in real-time. In the first phase of the project we have used Raspberry Pi

3 to do all that. It was very easy to use with Raspbian operating system. We faced

no issues configuring the board and installing the libraries we needed. Also, we con-

nected to the Raspberry Pi using Remote Desktop Connection (RDC) on Windows.

The only issue with the Raspberry Pi is that it was sluggish and not powerful enough

to do all these tasks.

We did our research and we found some of the best Single Board Computers (SBCs)

and one of them caught our eyes. That was the ASUS Tinker Edge R. This SBC is

specifically designed for AI applications that uses Rockchip NPU (Neural Processing

Unit), a machine learning accelerator with low power consumption. The board has

hex-core ARM Cortex processor, a 4 GB dual-channel LPDDR4 memory, and a 2 GB

of standalone memory for the NPU. We acquired the Tinker Edge R SBC. We had

some issues in the beginning with flashing the OS and configuring the board, but now

it is up and running. The board performance is astonishing. We copied the Python

scripts —that captures the network traffic, processes the captured data, and updates

the database— to the board and we did not face any slowness or overheat from the

board at all.

The system works as follows. The board is installed and configured initially with

the safe devices in the perimeter and is connected to the database with a unique key

that we provide. The board will be always on and capturing data. The machine

73

learning module will be triggered only by the mobile app when the user uses it. De-

pending on the time scale of the captured data that the user chooses, the ML module

will then start processing the data, and acquire the list of devices that are in the

perimeter, then will update the list on the mobile app real-time.

9.7 The Mobile Application

We built the mobile app using React Native as we previously elaborated. To begin

with, we tried to make the mobile app as simple as possible for the best user expe-

rience. The app is made of 3 pages. The home page, or the landing page, is what

the user first sees after opening the app. The second page is where we show the list

of devices that we fetch from the database. Finally, the third page is where we show

the device details. Regarding the design; we tried to have a simple sharp theme to

reflect that the app is related to new tech.

For the main page there is the logo that we got from hatchful (https://hatchful.

shopify.com) alongside with simple instructions. There are 3 buttons to give the user

the choice to select whichever time scale he wants for the captured data, either 5, 15,

or 30 minutes. Then comes the scan button, that when pressed, triggers the ML mod-

ule on the SBC to process the data that was previously captured and then updates

the database, then it navigates to the next page, the devices list page, and shows all

the devices.

74

https://hatchful.shopify.com
https://hatchful.shopify.com

Figure 41: Mobile app first page

75

The second page shows all the devices that were acquired from the SBC and sub-

mitted to the database. We fetch the devices, and we show them on the screen using

Flat List. We use an icon that represents the device, that can also be green or red

depending on whether the device is safe or not, which is determined by the user and

saved on the database. We show some concise details about each device such as the

device type and its MAC address. The list is made of buttons that the user can scroll

over and can click to go to the third page that shows more details about the device.

76

Figure 42: Second page in the beginning

77

The third page is the device info page. It shows extra details about the device

that was selected from the previous page. The information that we deemed to be of

importance for the user are; device type, device name, MAC address, device active

time, protocols used by the device, servers that the device communicates with, the

average size of the sent packets, data flow rate, and data flow volume. The banner on

the top of the page is either green or red depending on whether the device is safe or

not. We implemented two buttons in the bottom of the page for the user to choose

whether they recognize the device or not. If the user recognizes the device and presses

on the known device button, the banner’s color will change to green, the database

will be updated accordingly and said device will be marked safe. Otherwise, if the

user does not recognize the device, and presses on the unknown device button, the

banner’s color will change to red and the database will be updated accordingly.

78

Figure 43: Second page after marking a safe device

79

Figure 44: Device info when it is unsafe

80

Figure 45: Device info when it is safe

81

9.7.1 Limitations and Future Work

For future enhancement, the app could have the functionality to send a push notifi-

cation to the user once a new device is connected, so the user can be notified that

there is a possible intruder in their area and open the app and check the device and

mark it as safe or unsafe. Another function that could be added is an option for the

user, if a malicious device was detected, is to disconnect the malicious device from

the network.

82

10 Conclusion

In conclusion, our project solves a problem that no other literature tackled which is

not only detecting the devices but also allowing the user to know if there is a new

rogue device in their area. Our project consists of three main stages; data acquisition,

machine learning prediction and showing the output to the user and alerting them.

To bridge between the three stages we used the back-end service Firebase, where we

created a real-time database on the cloud that allowed the different components of the

project to communicate. We used Python and React Native as the main development

tools for our project, and we used ASUS’s Tinker Board as the hardware component

of our project.

We truly believe that the project has great potential, especially in the industry as

it solves a real life problem. We also believe that there is a big room for improvement,

especially for the machine learning model and its accuracy, as well as the interface of

the application and the whole output system, as they all can be optimised and become

more efficient. To achieve that we need to put more efforts into communicating with

the industry and training the machine learning model with bigger data sets that

contain a wider variety of devices.

83

References

[1] M. R. Shahid, G. Blanc, Z. Zhang, and H. Debar, “IoT Devices Recognition

Through Network Traffic Analysis,” 2018 IEEE International Conference on Big

Data (Big Data), 2018.

[2] “State of the IoT 2018: Number of IoT devices now at 7B - Market accelerating,”

IoT Analytics, 08-Aug-2018. [Online]. Available: https://iot-analytics.com/

state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/.

[Accessed: 15-Mar-2020].

[3] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Z. Yang, “Automatic Device Clas-

sification from Network Traffic Streams of Internet of Things,” 2018 IEEE 43rd

Conference on Local Computer Networks (LCN), 2018.

[4] C. Fachkha, E. Bou-Harb, A. Boukhtouta, S. Dinh, F. Iqbal and M. Debbabi,

”Investigating the dark cyberspace: Profiling, threat-based analysis and correla-

tion,” 2012 7th International Conference on Risks and Security of Internet and

Systems (CRiSIS), Cork, 2012, pp. 1-8.

[5] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vish-

wanath, and V. Sivaraman, “Classifying IoT Devices in Smart Environments

Using Network Traffic Characteristics,” IEEE Transactions on Mobile Comput-

ing, vol. 18, no. 8, pp. 1745–1759, Jan. 2019.

[6] A. Hamza, H. H. Gharakheili, T. A. Benson, and V. Sivaraman, “Detecting

Volumetric Attacks on loT Devices via SDN-Based Monitoring of MUD Activity,”

Proceedings of the 2019 ACM Symposium on SDN Research, Mar. 2019.

[7] Cisco, 2020. [Online]. Available: https://github.com/cisco/joy

84

https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://github.com/cisco/joy

[8] Let’s get clear about react native, 2018. [Online]. Avail-

able: https://www.simplytechnologies.net/blog/2018/4/4/

lets-get-clear-about-react-native

[9] ”Object Storage Features – Amazon S3”, Amazon Web Services, Inc., 2019.

[Online]. Available: https://aws.amazon.com/s3/features/. [Accessed: 05-

May- 2020].

[10] ”Detect and Respond to IoT events”, Amazon Web Services, Inc., 2019. [Online].

Available: https://aws.amazon.com/iot-events/. [Accessed: 05- May- 2020].

[11] ”AWS IoT Core Features - Amazon Web Services”, Amazon Web Services,

Inc., 2019.[Online].Available: https://aws.amazon.com/iot-core/features/

?nc=sn&loc=3. [Accessed: 05- May- 2020].

[12] Data Collected for ACM SOSR 2019. (n.d.). Retrieved November 26, 2020, from

https://iotanalytics.unsw.edu.au/attack-data

[13] Pandas Basics - Learn Python - Free Interactive Python Tutorial. (n.d.). Re-

trieved November 26, 2020, from https://www.learnpython.org/en/Pandas_

Basics

[14] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., . . . Duchesnay, É. (1970, January 01). Scikit-learn: Machine Learning in

Python. Retrieved November 26, 2020, from https://jmlr.org/papers/v12/

pedregosa11a.html

85

https://www.simplytechnologies.net/blog/2018/4/4/lets-get-clear-about-react-native
https://www.simplytechnologies.net/blog/2018/4/4/lets-get-clear-about-react-native
https://aws.amazon.com/s3/features/
https://aws.amazon.com/iot-events/
https://aws.amazon.com/iot-core/features/?nc=sn&loc=3
https://aws.amazon.com/iot-core/features/?nc=sn&loc=3
https://iotanalytics.unsw.edu.au/attack-data
https://www.learnpython.org/en/Pandas_Basics
https://www.learnpython.org/en/Pandas_Basics
https://jmlr.org/papers/v12/pedregosa11a.html
https://jmlr.org/papers/v12/pedregosa11a.html

Appendix A Data Acquisition and Preprocessing

A.1 Shell Script

PATH=$PATH:/sbin:/usr/sbin:/usr/local/bin:/usr/local/sbin:/home/chaos/joy/bin

ethr_addr_list="08:12:A5:57:92:56

00:55:DA:54:6D:B7

C8:2B:96:56:FA:5D

6C:E8:C6:38:B3:F1

D8:F1:5B:AF:CF:67

1C:F2:9A:34:D9:6F

2C:AA:8E:A4:97:B7

F6:8C:78:20:78:63

E0:98:06:CB:61:4D

00:17:88:B3:4A:D0

3C:52:82:2D:1C:5B

10:7B:44:91:A3:00

16:91:82:BB:03:90"

fileCo=1

while [$fileCo -le 1]

do

fileName="${fileCo}.pcap"

echo Processing $fileName

deviceCo=1

86

for addr in $ethr_addr_list

do

joy output="json_files/${fileCo}_${deviceCo}.json"\

bpf="ether host ${addr}"\

bidir=1\

dns=1\

http=1\

"pcap_files/${fileCo}.pcap"

((deviceCo++))

done

((fileCo++))

done

echo Running HARPY on 5-minute interval

python3 harpy.py -t 5

echo Running HARPY on 15-minute interval

python3 harpy.py -t 15

echo Running HARPY on 30-minute interval

python3 harpy.py -t 30

echo Done

A.2 Harpy Shell Launcher

#

#

87

PROJECT HARPY - HBKU Final Year Project

#

Data Collection, Preprocessing and Launcher Developer: Selman Tabet

Machine Learning Developer: Mohamed Amara

Frontend and App Developer: Omar Elshal

Supervisor: Dr. Ala Al-Fuqaha

#

#

---- Prerequisite file structure ----

- Harpy directory // Main app directory (MANDATORY, most essential argument to be provided via CLI unless already cd'd to it)

|_ /pcap_files/ // Capture files (MANDATORY - for Joy Tool Shell Script)

|_ /csv_files/ // (Default) Output of the feature extraction script (MANDATORY)

| |_ ListCSV.csv // List of MAC addresses (Optional iff the absolute path was provided via CLI)

|_ /json_files/ // Where Joy JSON output is stored (MANDATORY)

|_ whois_record.json // For RDAP requests in extract_features.py (MANDATORY)

#

DO NOT RUN UNLESS THE MANDATORY FILES AND FOLDERS IN THE FILE TREE ARE COMPLETE

#

#

#

Changelog: HARPY V3.4.2 - Style Update.

#

[STYLE]

- Moved changelog to harpy.py

88

- Additional harpy.py Launcher styling.

#

#

[ROADMAP]

#

* Next Beta branch, in anticipation of new datasets:

~ Have harpy.py output the number of MACs in ListCSV.csv, this would be handed over to extract_features as an argument that goes directly

to the device_co for loop to avoid hardcoding values.

~ For the same reason previously stated, the number of capture files needs to be calculated so that the value in the days_co for loop may

be dynamically adjusted for the files in /pcap_files/ directory.

~ New Python script may be developed to call cisco/joy for all MACs in ListCSV.csv, but this would limit the execution environment to POSIX

due to the potential usage of os.system(joy <args>), unless the user has "joy" cmd(let) somehow defined on their NT system.

~ In the event that the WHOIS Record was found to be outdated, it shall be cleared and rebuilt to address concerns with outdated registries.

#

#

import argparse

import os

import extract_features as extract

dir_path = os.path.dirname(os.path.realpath(__file__))

parser = argparse.ArgumentParser(description='Project HARPY Preprocessor: Takes Joy JSON flow files, compiles all relevant features and maps MAC addresses to each flow from a separate CSV for classification.')

parser.add_argument('-t', action='store', type = int, default = 5, dest='parsed_interval', help='Time interval (integer value, in minutes).')

parser.add_argument('-p', action='store', type = str, default = dir_path, dest='parsed_path', help='App Path, must contain json_files and csv_files folders.')

89

parser.add_argument('-l', action='store', type = str, default = os.path.join(dir_path, "csv_files", "ListCSV.csv"), dest='parsed_MAClist', help='ListCSV.csv File.')

parser.add_argument('-o', action='store', type = str, default = os.path.join(dir_path, "csv_files"), dest='parsed_output', help='Output Path.')

args = parser.parse_args()

print(" ")

print("HARPY Path: " + args.parsed_path)

print(" ")

print("ListCSV.csv Directory: " + args.parsed_MAClist)

print(" ")

print("Output Path: " + args.parsed_output)

print(" ")

extract.mac_map(args.parsed_MAClist, extract.extract_features(args.parsed_path, args.parsed_interval), args.parsed_output)

A.3 Feature Extraction Script

HARPY Joy JSON Feature Extraction

#

Created by: Selman Tabet (@selmantabet - https://selman.io/)

Special thanks to Dr. Ihab Mohammed from Western Michigan University for showing me the original design that inspired the structure of this Python module.

import os

import json

import datetime

import csv

import sys

90

import pandas as pd

import json

from ipwhois import IPWhois

'''

Features List:

Total Sleep Time: is the total time of no activity

Total Active Time: is the total time of activity

Total Flow Volume: number of bytes (sent/received) by the IoT device

Flow Rate: Total Flow Volume / Total Active Time

Average Packet Size (number of bytes sent/received / number of packets sent/recieved)

Number of servers (excluding DNS (53) and NTP (123))

RDAP/WHOIS Registration Name along with number of flows for each resolved name. Stored as dict.

Number of protocols (based on destination port number)

Number of unique DNS requests. (based on qn and rn in joy tool)

DNS Interval: total time for using DNS

91

NTP interval: total time for using NTP

'''

def extract_features(path, interval_time): # Installation path and and integer interval length in minutes.

print("Selected time interval: " + str(interval_time) + " minutes")

period_time = 60 * interval_time # Convert from minutes to seconds

app_directory = path

features_file_name = os.path.join(app_directory, 'csv_files', 'output_' + str(interval_time) + 'm.csv') # Output file is output_<time>m.csv

Prepare writer to write extracted features for device_co

features_csv = open(features_file_name, 'w')

features_writer = csv.writer(features_csv, delimiter=',')

features_writer.writerow(['total_sleep_time', 'total_active_time', 'total_flow_volume', 'flow_rate', 'avg_packet_size', 'num_servers', 'num_protocols', 'uniq_dns', 'dns_interval', 'ntp_interval', 'device_co', 'rdap_asn'])

overall_ports_dict = {}

overall_dns_dict = {}

with open(os.path.join(app_directory, 'json_files', 'whois_record.json')) as f:

whois_record = json.load(f)

for device_co in range(1, 32):

Process all days for device_co

for day_co in range(1, 21):

Read flows from flows file containing 1 day data

flows_file_name = os.path.join(app_directory, 'json_files', str(day_co) + '_' + str(device_co) + '.json')

92

print('Processing ' + flows_file_name + ' ...')

flows_file = open(flows_file_name, 'r')

flows = flows_file.readlines()

flows_file.close()

Features list

total_sleep_time = 0

total_active_time = 0

total_flow_volume = 0

total_packets = 0

servers_dic = {}

rdap_asn_record = {"Not Resolved":0}

ports_dic = {}

dns_query_dic = {}

dns_interval = 0

ntp_interval = 0

Time management variables

prev_end_time = 0

period_start_time = 0

period_flow_co = 0

93

Skip the first record, which stores Joy configurations used

nu_of_flows = len(flows)

for flow_co in range(1, nu_of_flows):

Collect features

#print(flow_co)

flow_data = json.loads(flows[flow_co])

Get times

cur_start_time = datetime.datetime.utcfromtimestamp(flow_data['time_start'])

cur_end_time = datetime.datetime.utcfromtimestamp(flow_data['time_end'])

cur_total_seconds = int((cur_end_time - cur_start_time).total_seconds())

total_active_time += cur_total_seconds

Get number of bytes and number of packets going out

total_flow_volume += int(flow_data['bytes_out'])

total_packets += int(flow_data['num_pkts_out'])

Get number of bytes and number of packets going in

if 'bytes_in' in flow_data:

total_flow_volume += int(flow_data['bytes_in'])

total_packets += int(flow_data['num_pkts_in'])

Get source port

#if flow_data['sp'] is not None:

port = int(flow_data['sp'])

if port not in ports_dic:

ports_dic[port] = 1

94

else:

ports_dic[port] += 1

Get destination port

port = 0

if flow_data['dp'] is not None:

port = int(flow_data['dp'])

if port not in ports_dic:

ports_dic[port] = 1

else:

ports_dic[port] += 1

'''

Overall ports dictionary

if port not in overall_ports_dict:

overall_ports_dict[port] = 1

else:

overall_ports_dict[port] += 1

'''

if port == 53:

dns_interval += cur_total_seconds

elif port == 123:

ntp_interval += cur_total_seconds

Get the server and WHOIS Record

if port != 53 and port != 123:

95

server = flow_data['da']

#print("Inspecting IP: " + server)

if server not in whois_record:

try:

ip_query = IPWhois(server)

RDAP = ip_query.lookup_rdap(depth=1, rate_limit_timeout=20) # This is to reduce the amount of failed RDAP requests, which would greatly improve execution times over bulk requests.

server_id = RDAP["asn_description"] # From what I've seen, this is the RDAP response key that would most likely be useful.

whois_record[server] = server_id # Store info into WHOIS record.

#print("New IP resolved as " + server_id)

except:

#print("Not resolved...")

server_id = "Not Resolved"

whois_record[server] = server_id # Though technically inaccurate, storing this IP would prevent further failed WHOIS lookups.

else:

server_id = whois_record[server] # The IP was previously looked up, so it's in the WHOIS record.

if server not in servers_dic:

rdap_asn_record[server_id] = 1

servers_dic[server] = 1

else:

servers_dic[server] += 1

rdap_asn_record[server_id] += 1

Get DNS query

if 'dns' in flow_data:

96

for dns_query in flow_data['dns']:

#print(dns_query)

query = ''

if 'qn' in dns_query:

query = dns_query['qn']

elif 'rn' in dns_query:

query = dns_query['rn']

if query != '':

if query not in dns_query_dic:

dns_query_dic[query] = 1

else:

dns_query_dic[query] += 1

'''

Overall dns query dictionary

if query not in overall_dns_dict:

overall_dns_dict[query] = 1

else:

overall_dns_dict[query] += 1

'''

if flow_co == 1:

period_start_time = cur_start_time

if period_flow_co == 0:

97

period_flow_co = 1

else:

period_flow_co += 1

cur_sleep_time = int((cur_start_time - prev_end_time).total_seconds())

Could be 0 for overlapping flows (device is active)

if cur_sleep_time > 0:

total_sleep_time += cur_sleep_time

if (int((cur_end_time - period_start_time).total_seconds()) >= period_time): # or (flow_co == (nu_of_flows-1)):

Finalize features computations

flow_rate = 0

if total_active_time > 0:

flow_rate = total_flow_volume / total_active_time

avg_packet_size = 0

if total_packets > 0:

avg_packet_size = total_flow_volume / total_packets

Save features

features_writer.writerow([total_sleep_time, total_active_time, total_flow_volume, flow_rate, avg_packet_size, len(servers_dic), len(ports_dic), len(dns_query_dic), dns_interval, ntp_interval, device_co, rdap_asn_record])

Reinitialize features

total_sleep_time = 0

total_active_time = 0

total_flow_volume = 0

total_packets = 0

98

servers_dic = {}

rdap_asn_record = {"Not Resolved":0}

ports_dic = {}

dns_query_dic = {}

dns_interval = 0

ntp_interval = 0

period_flow_co = 0

period_start_time = cur_end_time

prev_end_time = cur_end_time

features_csv.close()

with open(os.path.join(app_directory, 'json_files', 'whois_record.json'), 'w') as f:

json.dump(whois_record, f)

return features_file_name

def mac_map(mac_source, mac_target, output):

print("Mapping MACs...")

mac_src = pd.read_csv(mac_source)

mapping = pd.read_csv(mac_target)

mapped = mapping.merge(mac_src, on='device_co', how='left').rename(columns={'MAC Address':'MAC_address'})

mapped.to_csv(os.path.join(output, os.path.basename(mac_target).split(".csv")[0] + "_mapped.csv"), index=False)

99

print("Done.")

return 0

'''

stats_csv = open(stats_file_name, 'w')

stats_writer = csv.writer(stats_csv, delimiter=',')

stats_writer.writerow([overall_ports_dict, overall_dns_dict])

stats_csv.close()

'''

Appendix B Machine Learning Code

from sklearn.ensemble import RandomForestClassifier

from sklearn import model_selection

import pandas as pd

import numpy as np

from matplotlib import pyplot as plt

from sklearn import preprocessing

from mac_vendor_lookup import MacLookup

from sklearn.preprocessing import OneHotEncoder # use OneHotEncoder

from sklearn.compose import ColumnTransformer

import pyrebase

import random

import time

100

1) Prepare the data for training

2) Train the model

3) Prepare the testing data

4) Extract the time scale from the database

5) Choose the module to use and train it with the respective dataset

6) Go over the captured data in the sheet and

#predict the devices with

the ML model

7) Update the firebase db with the predicted devices

Data preparation:

load csv data

Training set for the 5 min time scale

df_5m_unsw = pd.read_csv("unsw_dataset_features_mapped_5m.csv",

low_memory=False)

Training set for the 15 min time scale

df_15m_unsw = pd.read_csv("unsw_dataset_features_mapped_15m.csv",

low_memory=False)

Training set for the 30 min time scale

df_30m_unsw = pd.read_csv("unsw_dataset_features_mapped_30m.csv",

low_memory=False)

df_5m = pd.read_csv("output_5m_mapped.csv", low_memory=False)

101

Training set for the 5 min time scale

df_15m = pd.read_csv("output_15m_mapped.csv", low_memory=False)

Training set for the 15 min time scale

df_30m = pd.read_csv("output_30m_mapped.csv", low_memory=False)

Training set for the 30 min time scale

counts the number of devices detected

print(df_5m_unsw["Device Type"].value_counts(sort=1))

numOfDevices = len(df_5m_unsw["Device Type"].value_counts(sort=1))

print("Number of types detected is: " + str(numOfDevices) + " types")

print("\n")

remove the unnecessary data columns

df_5m.drop(["device_co", "Device Name", "MAC_address"], axis=1,

inplace=True)

df_15m.drop(["device_co", "Device Name", "MAC_address"], axis=1,

inplace=True)

df_30m.drop(["device_co", "Device Name", "MAC_address"], axis=1,

inplace=True)

handle missing values

df_5m = df_5m.dropna()

df_15m = df_15m.dropna()

df_30m = df_30m.dropna()

#pred = pred.dropna()

102

define the dependent variable

Y5m = df_5m["Device Type"].values

Y15m = df_15m["Device Type"].values

Y30m = df_30m["Device Type"].values

convert strings into numbers so the model can process it

le = preprocessing.LabelEncoder() # use LabelEncoder

df_5m['rdap_asn'] = le.fit_transform(df_5m['rdap_asn'])

df_5m['Connection Type'] = le.fit_transform(df_5m['Connection Type'])

df_15m['rdap_asn'] = le.fit_transform(df_15m['rdap_asn'])

df_15m['Connection Type'] = le.fit_transform(df_15m['Connection Type'])

df_30m['rdap_asn'] = le.fit_transform(df_30m['rdap_asn'])

df_30m['Connection Type'] = le.fit_transform(df_30m['Connection Type'])

define the independent variable

X5m = df_5m.drop(labels=["Device Type"], axis=1)

X15m = df_15m.drop(labels=["Device Type"], axis=1)

X30m = df_30m.drop(labels=["Device Type"], axis=1)

split data into training set and testing set

from sklearn.model_selection import train_test_split

5 minutes time scale model

103

X_train_5m, X_test_5m, Y_train_5m, Y_test_5m = train_test_split(X5m, Y5m,

test_size=0.2, random_state=10, shuffle=True)

15 minutes time scale model

X_train_15m, X_test_15m, Y_train_15m, Y_test_15m = train_test_split(X15m, Y15m,

test_size=0.2, random_state=10, shuffle=True)

30 minutes time scale model

X_train_30m, X_test_30m, Y_train_30m, Y_test_30m = train_test_split(X30m, Y30m,

test_size=0.2, random_state=10, shuffle=True)

create the model

from sklearn.ensemble import RandomForestClassifier

model_5m = RandomForestClassifier(n_estimators = 10, random_state=30)

model_15m = RandomForestClassifier(n_estimators = 10, random_state=30)

model_30m = RandomForestClassifier(n_estimators = 10, random_state=30)

train the model

model_5m.fit(X_train_5m, Y_train_5m)

model_15m.fit(X_train_15m, Y_train_15m)

model_30m.fit(X_train_30m, Y_train_30m)

test the model

prediction_test_5m = model_5m.predict(X_test_5m)

prediction_test_15m = model_15m.predict(X_test_15m)

104

prediction_test_30m = model_30m.predict(X_test_30m)

from sklearn import metrics

print("Testing results for the 5 minutes time scale model...")

print("Accuracy = ",

metrics.accuracy_score(Y_test_5m, prediction_test_5m))

check the contribution of each independent variable

feature_list = list(X5m.columns)

feature_imp = pd.Series(model_5m.feature_importances_,

index=feature_list).sort_values(ascending=False)

print(feature_imp)

print("\n\n\n")

print("Testing results for the 15 minutes time scale model...")

print("Accuracy = ", metrics.accuracy_score(Y_test_15m,

prediction_test_15m))

check the contribution of each independent variable

feature_list = list(X15m.columns)

feature_imp = pd.Series(model_15m.feature_importances_,

index=feature_list).sort_values(ascending=False)

print(feature_imp)

105

print("\n\n\n")

print("Testing results for the 30 minutes time scale model...")

print("Accuracy = ", metrics.accuracy_score(Y_test_30m,

prediction_test_30m))

check the contribution of each independent variable

feature_list = list(X30m.columns)

feature_imp = pd.Series(model_30m.feature_importances_,

index=feature_list).sort_values(ascending=False)

print(feature_imp)

firebase configuration

config = {

"apiKey":"AIzaSyBJqqj1jgw0sNgCD-iC_uKbKPLqdg5Ytp8",

"authDomain":"harpy-c8519.firebaseapp.com",

"databaseURL":"https://harpy-c8519.firebaseio.com/",

"projectId":"harpy-c8519",

"storageBucket":"harpy-c8519.appspot.com"

}

firebase = pyrebase.initialize_app(config)

db = firebase.database()

ID = '-MHfQDfcvO17vmKEFUOc'

106

timeScale = db.child(ID).get().val()['timeScale']

print(timeScale)

print("\n")

chosenModel = ''

captured_devices = {}

A sample of a captured dataset

captured_set_sample = pd.read_csv("test_output.csv")

captured_set_sample = captured_set_sample.dropna()

captured_set_sample_enc = captured_set_sample[0:]

le = preprocessing.LabelEncoder() # use LabelEncoder

captured_set_sample_enc['rdap_asn'] = le.fit_transform(

captured_set_sample_enc['rdap_asn'])

captured_set_sample_enc['Connection Type'] = le.fit_transform(

captured_set_sample_enc['Connection Type'])

captured_set_sample_enc.drop(

["device_co", "Device Name", "MAC_address", "Device Type"], axis=1,

inplace=True)

while (1):

107

db_content = []

timeScale = db.child(ID).get().val()['timeScale']

if (timeScale == 5):

chosenModel = model_5m

elif (timeScale == 15):

chosenModel = model_15m

elif (timeScale == 30):

chosenModel = model_30m

for row1, row2 in zip(captured_set_sample_enc.iterrows(),

captured_set_sample.iterrows()):

features = list(row2)[1]

if (not first_row):

if (features[13].strip() not in db_content):

device_type = chosenModel.predict(list(row1)[1:12])

db_content+= [features[13].strip()]

if(device_type[0]=='Hub'):

iconName = 'device-hub'

elif(device_type[0]=='Camera'):

iconName = 'camera-alt'

elif(device_type[0]=='Computer'):

iconName = 'computer'

108

elif(device_type[0]=='Appliance'):

iconName = 'home-filled'

elif(device_type[0]=='Sensor'):

iconName = 'settings-remote'

elif(device_type[0]=='Misc'):

iconName = 'miscellaneous-services'

elif(device_type[0]=='Network'):

iconName = 'router-wireless'

db.child(ID).child(features[13].strip()).update({

"Device Type": device_type[0],

"Device MAC": features[13].strip(),

"Device Name": features[12].strip(),

"Device Total Active Time": features[1],

"Device Total Flow Volume": features[2],

"Device Flow Rate": features[3],

"Device Avarage Packet Size": features[4],

"Number of Servers": features[5],

"Number of Protocols Used": features[6],

"iconName": iconName,

"safety": False,

109

})

Appendix C React Native Code

C.1 Navigation

import {createAppContainer} from 'react-navigation';

import {createStackNavigator} from 'react-navigation-stack';

import HomeScreen from './src/screens/HomeScreen';

import ListScreen from './src/screens/ListScreen';

import DeviceInfo from './src/screens/DeviceInfo';

const navigator = createStackNavigator(

{

Home: HomeScreen,

List: ListScreen,

Device: DeviceInfo,

},

{

initialRouteName: 'Home',

defaultNavigationOptions: {

title: 'Home',

},

},

);

110

export default createAppContainer(navigator);

C.2 Firebase Configuration

import * as firebase from 'firebase';

let config = {

apiKey: 'AIzaSyBJqqj1jgw0sNgCD-iC_uKbKPLqdg5Ytp8',

authDomain: 'harpy-c8519.firebaseapp.com',

databaseURL: 'https://harpy-c8519.firebaseio.com/',

projectId: 'harpy-c8519',

storageBucket: 'harpy-c8519.appspot.com',

};

firebase.initializeApp(config);

export default firebase;

C.3 Home Screen

import React from 'react';

import {Text, StyleSheet, View, TouchableOpacity, Image} from 'react-native';

import firebase from '../config';

import {createAppContainer} from 'react-navigation';

import {createStackNavigator} from 'react-navigation-stack';

import ListScreen from './ListScreen';

class HomeScreen extends React.Component {

111

state = {

buttonBGColorsArr: ['#303841', '#f3f3f3', '#f3f3f3'],

buttonFontColorsArr: ['#f3f3f3', '#303841', '#303841'],

};

render() {

return (

<View style={styles.viewStyle}>

<View style={{flex: 1, marginTop: 10}}>

<Image

style={{

justifyContent: 'center',

width: 400,

height: 400,

resizeMode: 'contain',

alignSelf: 'center',

}}

source={require('../../assets/logo.png')}

/>

</View>

<View style={{flex: 1, marginTop: 50}}>

<Text style={styles.text}>

Select your scan time scale in minutes

</Text>

<View style={{flex: 1, flexDirection: 'row', marginTop: -150}}>

<TouchableOpacity

112

style={{

padding: 10,

backgroundColor: this.state.buttonBGColorsArr[0],

marginTop: 50,

width: 80,

alignSelf: 'center',

margin: 20,

borderWidth: 1,

borderColor: '#303841',

}}

onPress={() => {

this.setState({

buttonBGColorsArr: ['#303841', '#f3f3f3', '#f3f3f3'],

buttonFontColorsArr: ['#f3f3f3', '#303841', '#303841'],

});

firebase

.database()

.ref('/-MHfQDfcvO17vmKEFUOc/timeScale')

.set(5);

}}>

<Text

style={{

fontSize: 20,

color: this.state.buttonFontColorsArr[0],

textAlign: 'center',

113

}}>

5

</Text>

</TouchableOpacity>

<TouchableOpacity

style={{

padding: 10,

backgroundColor: this.state.buttonBGColorsArr[1],

marginTop: 50,

width: 80,

alignSelf: 'center',

margin: 20,

borderWidth: 1,

borderColor: '#303841',

}}

onPress={() => {

this.setState({

buttonBGColorsArr: ['#f3f3f3', '#303841', '#f3f3f3'],

buttonFontColorsArr: ['#303841', '#f3f3f3', '#303841'],

});

firebase

.database()

.ref('/-MHfQDfcvO17vmKEFUOc/timeScale')

.set(15);

}}>

114

<Text

style={{

fontSize: 20,

color: this.state.buttonFontColorsArr[1],

textAlign: 'center',

}}>

15

</Text>

</TouchableOpacity>

<TouchableOpacity

style={{

padding: 10,

backgroundColor: this.state.buttonBGColorsArr[2],

marginTop: 50,

width: 80,

alignSelf: 'center',

margin: 20,

borderWidth: 1,

borderColor: '#303841',

}}

onPress={() => {

this.setState({

buttonBGColorsArr: ['#f3f3f3', '#f3f3f3', '#303841'],

buttonFontColorsArr: ['#303841', '#303841', '#f3f3f3'],

});

115

firebase

.database()

.ref('/-MHfQDfcvO17vmKEFUOc/timeScale')

.set(30);

}}>

<Text

style={{

fontSize: 20,

color: this.state.buttonFontColorsArr[2],

textAlign: 'center',

}}>

30

</Text>

</TouchableOpacity>

</View>

</View>

<View style={{flex: 1, marginTop: -100}}>

<Text style={styles.text}>

Press scan to show the devices around you

</Text>

<TouchableOpacity

style={styles.buttonStyle}

onPress={() => this.props.navigation.navigate('List')}>

<Text style={styles.textStyle}>Scan</Text>

</TouchableOpacity>

116

</View>

</View>

);

}

}

const styles = StyleSheet.create({

text: {

fontSize: 20,

textAlign: 'center',

fontFamily: 'Menlo',

},

viewStyle: {

flex: 1,

alignItems: 'center',

},

textStyle: {

fontSize: 20,

color: '#ffffff',

textAlign: 'center',

fontFamily: 'Menlo',

},

buttonStyle: {

padding: 10,

backgroundColor: '#303841',

117

width: 200,

alignSelf: 'center',

marginTop: 35,

},

});

export default HomeScreen;

C.4 List Screen

import {

View,

Text,

StyleSheet,

FlatList,

TouchableOpacity,

SafeAreaView,

} from 'react-native';

import firebase from '../config';

import Icon from 'react-native-vector-icons/MaterialIcons';

var data = [{1: 1}];

class ListScreen extends React.Component {

state = {

listData: [],

};

118

componentDidMount() {

firebase

.database()

.ref('/-MHfQDfcvO17vmKEFUOc')

.on('value', (querySnapShot) => {

data = [querySnapShot.val()];

this.setState({listData: data});

});

}

render() {

return (

<SafeAreaView>

<View>

<Text

style={{

fontFamily: 'Menlo',

alignSelf: 'center',

color: 'black',

fontSize: 20,

}}>

{Object.keys(data[0]).length - 1} Devices Were Detected

</Text>

<FlatList

data={this.state.listData}

119

renderItem={({item}) => {

return (

<SafeAreaView style={styles.container}>

{Object.keys(item).map((value, index) => {

return (

value !== 'timeScale' &&

value !== 'scan' && (

<TouchableOpacity

onPress={() =>

this.props.navigation.navigate('Device', {

device: item[value],

})

}

style={styles.buttonStyle}>

<Icon

name={item[value].iconName}

size={30}

color={item[value].safety ? 'green' : 'red'}

style={styles.iconStyle}

/>

<View style={styles.iconSeparator} />

<View>

<Text style={styles.textStyle}>

Device Type: {item[value]['Device Type']}

</Text>

120

<Text style={styles.textStyle}>MAC: {value}</Text>

</View>

<Icon

name={'arrow-right'}

size={30}

color="#f3f3f3"

style={{

alignSelf: 'center',

}}

/>

</TouchableOpacity>

)

);

})}

</SafeAreaView>

);

}}

/>

</View>

</SafeAreaView>

);

}

}

121

const styles = StyleSheet.create({

container: {

flex: 1,

justifyContent: 'center',

alignItems: 'center',

backgroundColor: '#f3f3f3',

},

textStyle: {

fontSize: 20,

color: '#f3f3f3',

padding: 1,

marginLeft: 10,

fontFamily: 'Menlo',

},

buttonStyle: {

flexDirection: 'row',

alignItems: 'center',

justifyContent: 'space-between',

padding: 5,

backgroundColor: '#303841',

marginTop: 1,

width: '100%',

flex: 1,

},

iconSeparator: {

122

backgroundColor: '#f3f3f3',

width: 1,

height: 40,

},

iconStyle: {

padding: 5,

},

});

export default ListScreen;

C.5 Device info page

import React from 'react';

import {View, Text, StyleSheet, TouchableOpacity} from 'react-native';

import firebase from '../config';

var data;

var color;

class DeviceInfo extends React.Component {

state = {

known: this.props.navigation.getParam('device')['safety'],

};

componentDidMount() {

const item = this.props.navigation.getParam('device');

123

firebase

.database()

.ref(`/-MHfQDfcvO17vmKEFUOc/${item['Device MAC']}/safety`)

.on('value', (querySnapShot) => {

data = [querySnapShot.val()];

this.setState({known: data});

var color = item['safety'];

});

}

render() {

const item = this.props.navigation.getParam('device');

var headerbgColor = color ? 'green' : 'red';

var unknownbgColor = color ? 'white' : 'red';

var knownbgColor = color ? 'green' : 'white';

const toggleSwitch = () => {

firebase

.database()

.ref(`/-MHfQDfcvO17vmKEFUOc/${item['Device MAC']}/safety`)

.set(!item['safety']);

this.setState({known: !this.state.known});

color = !color;

};

124

return (

<View style={styles.viewStyle}>

<Text

style={{

fontSize: 25,

color: 'white',

backgroundColor: headerbgColor,

textAlign: 'center',

padding: 10,

borderRadius: 5,

fontFamily: 'Menlo',

marginBottom: 5,

}}>

Device Information

</Text>

<Text style={styles.textStyle}>Type: {item['Device Type']}</Text>

<Text style={styles.textStyle}>Name: {item['Device Name']}</Text>

<Text style={styles.textStyle}>MAC Address: {item['Device MAC']}</Text>

<Text style={styles.textStyle}>

Active Time: {item['Device Total Active Time']} (Seconds)

</Text>

<Text style={styles.textStyle}>

Protocols Used: {item['Number of Protocols Used']}

</Text>

<Text style={styles.textStyle}>

125

Servers: {item['Number of Servers']}

</Text>

<Text style={styles.textStyle}>

Average Packet Size:{' '}

{Number(item['Device Avarage Packet Size'].toFixed(1))} (Bytes)

</Text>

<Text style={styles.textStyle}>

Data Flow Rate: {Number(item['Device Flow Rate'].toFixed(1))}{' '}

(Bytes/Second)

</Text>

<Text style={styles.textStyle}>

Data Flow Volume: {item['Device Total Flow Volume']} (Bytes)

</Text>

<View

style={{

flex: 1,

flexDirection: 'row',

justifyContent: 'space-evenly',

marginTop: 100,

}}>

<TouchableOpacity

style={{

backgroundColor: unknownbgColor,

marginTop: 50,

width: 190,

126

height: 50,

alignSelf: 'center',

margin: 20,

borderWidth: 1,

borderColor: '#303841',

justifyContent: 'center',

alignItems: 'center',

}}

onPress={() => toggleSwitch()}>

<Text

style={{

fontSize: 20,

fontFamily: 'Menlo',

}}>

Unknown Device

</Text>

</TouchableOpacity>

<TouchableOpacity

style={{

backgroundColor: knownbgColor,

marginTop: 50,

width: 190,

height: 50,

alignSelf: 'center',

margin: 20,

127

borderWidth: 1,

borderColor: '#303841',

justifyContent: 'center',

alignItems: 'center',

}}

onPress={() => toggleSwitch()}>

<Text

style={{

fontSize: 20,

fontFamily: 'Menlo',

}}>

Known Device

</Text>

</TouchableOpacity>

</View>

</View>

);

}

}

const styles = StyleSheet.create({

viewStyle: {},

textStyle: {

fontSize: 20,

color: 'black',

128

padding: 10,

borderRadius: 5,

fontFamily: 'Menlo',

},

buttonStyle: {

padding: 10,

backgroundColor: '#303841',

width: 200,

alignSelf: 'center',

marginTop: 35,

},

});

export default DeviceInfo;

129

	Abstract
	List of Figures
	Acknowledgements
	Specifications
	Project Design & Structure
	Work Package 1: Software
	Work Package 2: Software
	Work Package 3: Software
	Work Package 4: Engagement
	Work Package 5: Engagement
	Work Package 6: Engagement
	Work Package 7: Hardware
	Work Package 8: Hardware
	Work Package 9: Hardware
	Work Package 10: Writing Final Report

	Stakeholders
	Input from Stakeholders
	Siemens
	Ministry of Interior in Qatar

	Test Devices and Procurement
	Literature Review
	IoT Devices Recognition Through Network Traffic Analysis
	Automatic Device Classification from Network Traffic Streams of Internet of Things
	Investigating the Dark Cyberspace: Profiling, Threat-Based Analysis and Correlation
	Classifying IoT Devices in Smart Environments Using Network Traffic Characteristics
	Detecting Volumetric Attacks on IoT Devices via SDN-Based Monitoring of MUD Activity

	Methodology and Experimental Setup
	Joy
	The Sleuth Kit

	Input System
	Joy Shell Script
	Feature Extraction Scripts
	New Data Acquisition
	Concerns and potential improvements
	New Feature Overhead and Limitation
	Router/Switch Requirements
	Data-set-related Limitations

	Machine Learning Software Program
	Introduction
	Machine Learning Program Functionality
	Machine Learning Algorithm
	Data Preparation
	Machine Learning Model Creation and Training
	Testing and Results Observations
	Listening and Updating the Real-time Database

	Output System
	Overview
	React Native
	AWS
	Firebase
	Firebase vs AWS
	The Single Board Computer
	The Mobile Application
	Limitations and Future Work

	Conclusion
	References
	Appendix
	Data Acquisition and Preprocessing
	Shell Script
	Harpy Shell Launcher
	Feature Extraction Script

	Machine Learning Code
	React Native Code
	Navigation
	Firebase Configuration
	Home Screen
	List Screen
	Device info page

